
www.manaraa.com

Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

12-1999 

Application of the Interaction Picture to Reactive Scattering in One Application of the Interaction Picture to Reactive Scattering in One 

Dimension Dimension 

Michael J. MacLachlan 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Engineering Physics Commons 

Recommended Citation Recommended Citation 
MacLachlan, Michael J., "Application of the Interaction Picture to Reactive Scattering in One Dimension" 
(1999). Theses and Dissertations. 4825. 
https://scholar.afit.edu/etd/4825 

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4825&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=scholar.afit.edu%2Fetd%2F4825&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4825?utm_source=scholar.afit.edu%2Fetd%2F4825&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


www.manaraa.com

APPLICATION OF THE INTERACTION PICTURE 
TO REACTIVE SCATTERING 

IN ONE DIMENSION 

DISSERTATION 

Michael J. MacLachlan, Major, USAF 
AFIT/DS/ENP/99-02 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

Approved for Public Release; Distribution Unlimited 

PJJC 9M£F? INSPECTED 4 



www.manaraa.com

The views expressed in this dissertation are those of the author and do not reflect the 

official policy or position of the Department of Defense or the United States Government. 



www.manaraa.com

AFIT/DSP/ENP/99-02 

Application of the Interaction Picture to Reactive Scattering in One Dimension 

DISSERTATION 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

Michael J. MacLachlan, B.M., B.S.E.E., M.S.N.E 

Major, USAF 

September 1999 

Approved for public release; distribution unlimited 



www.manaraa.com

AFIT/DSP/ENP/99-02 

Application of the Interaction Picture to Reactive Scattering in One Dimension 

Michael J. MacLachlan, B.M., B.S.E.E., M.S.N.E 

Major, USAF 

Approved: 

Dr. Anthon\/N.'P/&lazotto\ 
Dean's Representative( 

/ &? ß SifiW 
Date 

Date      ' 
CQrnmittee Member/^/ . 

ß Svtfffi 
Date 

Date   / 

Robert A. Calico, Jr 
Dean 



www.manaraa.com

Preface 

In the Air Force Research Laboratory's Propulsion Sciences and Advanced Concepts Divi- 

sion, teams of scientists and engineers are engaged in research aimed at making rockets and 

aircraft more capable and more efficient. They design new high-energy molecules to im- 

prove performance of propellants. They develop and investigate new materials, searching 

for ways to make lighter-weight components that function at higher temperatures. They 

attempt to make vehicles and weapons more survivable by manipulating their exhaust 

chemistry and probing that of adversaries' vehicles and weapons. 

Some of this research is done analytically; most experimentally. In many cases, the 

substances involved in the experimental investigations are extremely flammable, explosive 

or toxic. To work with such substances safely is a difficult and expensive, but necessary 

proposition. If it were possible analytically to predict the outcomes of reactions and the 

configurations of molecules, the need for such laborious experiments could be reduced to 

simple one-time verifications of the computational predictions. For now and for the fore- 

seeable future, however, analytical approaches are vastly slower, more difficult, and more 

expensive than experimentation. Great strides are needed in both numerical algorithms 

and computer hardware before computer calculations can feasibly replace even relatively 

simple chemical experiments on the types of molecules most valuable in aerospace propul- 

sion applications. This project originated in this need, which is only one example among 

many beneficial potential applications of quantum modeling of chemical systems. 

No great strides have resulted, but perhaps a step was taken in the right direction, 

thanks to the generous support of numerous people and organizations. This project was 

sponsored by the High Energy Density Matter Star Team at the Air Force Research Lab- 

oratory Propulsion Directorate. My thanks to the team's leaders, Dr. Jeff Sheehy and 

Dr. Mario Fajardo, as well as their redoubtable branch chief, Dr. Pat Carrick, for the 

opportunity. Our mutual leaders, Dr. Steve Rodgers and Dr. Phil Kessel, and recently 

Mr. Mike Huggins, have also been indispensably supportive. I was also honored to receive 

encouragement and counsel regarding the mechanics of completing a doctorate from three 

of the most senior leaders of the Propulsion Directorate: Col John Rogacki, Col Wesley 

in 
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Cox, and Dr. Robert Corley. I hope to return the favor some day by passing on their wise 

advice to other struggling young students. 

Computers were crucial to this project-the more and the bigger the better. Key 

portions of the work were facilitated by the use of the Scientific Visualization Laboratory 

at the Aeronautical Systems Center High Performance Computing Major Shared Resource 

Center. Thanks to Dr. Jerry Boatz for helping me surmount some difficulty in using this 

facility. Thanks also to Dean Wadsworth, Roy Hilton, and Alan Kawasaki for their help 

getting me access to computers at the Air Force Research Laboratory. 

The members of my dissertation committee, Dr. William Bailey, Dr. Larry Burggraf, 

Lt Col Jeffery Little, and Dr. Anthony Palazzotto, and my advisor, Dr. Dave Weeks, not 

only provided essential guidance, they were graciously accomodating regarding the fits and 

starts in the progress of my research, dictated by the demands of my job at the Air Force 

Research Laboratory. 

And there were those who served by being there, and being themselves-my friends 

and family. I could not begin to express my appreciation for the countless demonstrations 

of their support they have given me these past six years, and the years that led up to them. 

First among them, a veritable geyser of wisdom, faith, encouragement, and inspiration, is 

one who shuns credit and recognition, but will always get it from me nonetheless. 

Michael J. MacLachlan 

IV 
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Abstract 

The interaction picture is used together with the channel-packet method in a new 

time-dependent approach to compute reactive scattering matrix elements. The channel- 

packet method enables the use of the interaction picture for computing reactive S-matrix 

elements by splitting the computational effort into two parts. First, asymptotic reactant 

and product wavepackets are individually propagated into the interaction region of the po- 

tential to form Moller states. The interaction picture, in contrast to the usual Schrödinger 

picture of quantum mechanics, is so constructed that a wavefunction that experiences no 

change in potential (that is, a free-particle wavefunction) remains always fixed, with no 

translation or distortion. In the Schrödinger picture, free-particle wavefunctions translate 

and spread with time. By removing free-particle spreading, the use of the interaction pic- 

ture reduces the size of the region of space that must be modeled when computing the 

M0ller states. Since the asymptotic wavepackets are propagated in time independently of 

each other, it is possible to choose an asymptotic Hamiltonian and corresponding inter- 

action picture that is well suited for each arrangement channel. By using two different 

interaction pictures, one for the reactant arrangement channel and one for the product 

arrangement channel, it is possible to realize savings in the required grid size. During the 

second part of the channel-packet computation, the reactant and product wavepackets ob- 

tained from the first part of the calculation are further propagated using the Schrödinger 

picture. The time-dependent correlation between the evolving wavepackets is calculated 

as they split into energetically accessible arrangement channels and are absorbed using 

absorbing boundary conditions. 

The use of the interaction picture for computing S-matrix elements is developed, 

validated, and illustrated using a simple one-dimensional reactive example where the size 

of the grid required for computing the M0ller state in the interaction picture is reduced by 

a factor of two when compared with required grid size in the Schrödinger picture. Larger 

reductions in grid requirements are realized when the wavepackets remain compact while 

evolving into Möller states, especially when reactant or product momenta are high. 

xvi 
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Application of the Interaction Picture to Reactive Scattering in One Dimension 

I.   Introduction 

1.1    Context of the Research 

The purpose of this project is to advance certain computational approaches to molec- 

ular scattering theory, part of the physics that underlies chemical kinetics. Chemical reac- 

tions are macroscopic manifestations of numerous individual collisions among molecules of 

various species, carrying some thermal distribution of translational, rotational, vibrational, 

and electronic energies. Each pair of colliding molecules experiences a spatially dependent 

mutual force, which is appreciable over some "interaction region" of relatively small inter- 

molecular separation distances and falls to zero in the asymptotic limit of large separations. 

The interaction force is the observable manifestation of an interaction potential-energy 

function whose effect is significant in the interaction region, and which approaches a con- 

stant value in the asymptotic limit. A classical view of a molecular collision event is 

illustrated in Figure 1.1. The figure shows an elastic collision in a coordinate system in 

which one of the particles is fixed. In a center-of-mass coordinate system, comparable 

dynamics could occur if one of the particles were of much larger mass than the other. The 

light particle travels in a straight line through the region of space where the intermolecular 

potential is negligible, along the asymptotic paths noted in the figure. The interaction 

region is small compared to the asymptotic regions of the interaction. 

The example in Figure 1.1 is an elastic collision, wherein the colliding particles are 

changed in momentum only; not in internal configuration. Over the course of more com- 

plex "reactive" collisions, numerous types of changes may occur in the colliding reactant 

molecules, including the rearrangement of atoms within or between molecules, intercon- 

version of kinetic and potential energy, and the exchange of kinetic energy among its 

translational, rotational, vibrational, and electronic manifestations. However, the event 

may always be seen as consisting of a brief period of strong interaction, preceded and 

followed by long periods of negligible interaction. 

1-1 
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• Approximate regionj 

I      of interaction     i 

Figure 1.1 Schematic of a classical elastic collision event, as it might occur between a 
free and a fixed particle in a laboratory reference frame, or between a very 
light and a very heavy particle in a center-of-mass frame(l). 

In order to predict the outcome of a reaction, or to understand a known reaction 

from first principles, one would like to know the probabilities that various asymptotic 

post-collision states will result from the asymptotic pre-collision states.   The informa- 

tion needed to derive the probability that reactants in each possible energetic state and 

physical configuration will give rise to each possible state and configuration of products 

is contained in the scattering operator S. The state-to-state reaction probability can be 

averaged, weighted by the statistical momentum distribution of the reactants, to obtain 

scattering cross sections, which can be used in turn to calculate reaction rates and pre- 

dict macroscopic reaction outcomes. The scattering operator is derived numerically in an 

energy representation of finite order, known as the S matrix. The square of the absolute 

value of the S matrix gives, for each pair of reactant and product energies, the probability 

that a reaction yielding the particular set of products at the selected product energy and 

configuration will result from the collision of the reactants at the selected reactant energy 

and configuration. 

Both time-dependent or time-independent techniques have been developed to com- 

pute the S matrix (or portions of it) numerically.   Time-independent methods(2-6) are 
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limited in speed and scope of application by their dependence on the diagonalization of 

large matrices. Time-dependent methods(7-14) have been hampered by their requirement 

to follow the motion of quantum or semiclassical particles over large changes in position 

and momentum during the course of the collision, over the full time from before the re- 

actants begin to interact, through the collision, to the time when the products no longer 

interact with each other. Both the time-independent and the time-dependent methods 

therefore present large computational problems, which can only be solved with reason- 

able speed and accuracy for collisions involving very few atoms. Based on the numerical 

techniques available in 1988, Kosloff estimated that fast minicomputers could reasonably 

be used for problems with three coordinate degrees of freedom, and that, based on ex- 

pected improvements in computational hardware alone, this capability would increase by 

one degree of freedom every seven to eight years(7). The analytical techniques Kosloff 

envisioned, like the ones treated in this project, all invoke the Born-Oppenheimer approx- 

imation. This is the assumption that electrons adapt instantaneously to the motion of 

their nuclei, allowing the treatment of atoms without dealing with electrons as separate 

objects(15). Within this approximation, the neglect of overall system rotations enables 

three degrees of freedom to suffice for examining two-atom collisions, as will be seen in 

Section 1.3. Each additional atom adds three more degrees of freedom to the problem, 

and the computational time required to compute the S matrix increases rapidly with the 

number of degrees of freedom. The scaling of computational effort with degrees of freedom 

is estimated in Appendix A. Despite this, recent algorithmic developments such as absorb- 

ing boundary conditions have already yielded some six-dimensional calculations within the 

eight-year period following Kosloff's estimate( 16-19). This is a good illustration of the 

extra leverage algorithmic advances offer to complement progress in computer hardware. 

However, computational improvements notwithstanding, existing computational capabili- 

ties are still far from sufficient for full quantum-mechanical treatment of the majority of 

reactive scattering problems. 

Typically, quantum computations are performed using a view or "picture" of the 

mechanics of quantum wavefunctions known as the Schrödinger picture. Complex wave- 

functions containing both the positional and momentum-space distributions of a quantum 
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system's probability density, are common to all quantum "pictures." The absolute value 

squared, (*| *), of a wavefunction * gives the distribution of the probability of the sys- 

tem being found in a particular configuration. The Schrödinger picture is characterized by 

wavefunctions obeying the Schrödinger equation of motion in the form 

mft\i>)s = HSms, (l.i) 

where Hs is the full system Hamiltonian as discussed in Section 1.3. Scattering calculations 

can be performed fruitfully in the Schrödinger picture, but this project demonstrates that 

another framework, the interaction picture, offers computational advantages at least in 

some scattering problems. In the interaction picture, described in detail in Section 3.5, 

wavefunctions obey the Schrödinger equation in the same form, 

ih±W)I = HIW)I, (1.2) 

as in the Schrödinger picture, but the Hamiltonian operator Hj and the wavefunction ipj 

are both defined in such a way as to cancel out all "free" motion in the system—such as 

the motion experienced in the scattering system in its asymptotic region. 

In this project, the interaction picture is part of a collection of techniques assembled 

to increase the efficiency with which S-matrix elements can be computed. Three new time- 

dependent computational approaches—the channel-packet method, absorbing boundary 

conditions, and the interaction picture—are used together in a single model for the first 

time. The channel-packet method allows the calculation of relevant sets of reactive S- 

matrix elements without the expense of approximating the entire matrix, and is the key 

to surmounting long-standing difficulties with the application of the interaction picture to 

reactive scattering calculations (1). The other two techniques complement the channel- 

packet method by decreasing its computational effort. The assembly of techniques is 

developed theoretically in two dimensions in Section 1.3, and analyzed computationally 

in one dimension elsewhere in this document. It is extensible in a straightforward way to 

systems with higher degrees of freedom, and should improve further in speed if transported 

to parallel-architecture computers. 
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1.2 Research Approach and Scope 

The tools developed for this project are based on simulated time evolution of wave- 

functions as they interact with one-dimensional potentials. Both the interaction picture 

(Section 3.5) and the Schrödinger picture are used. The channel-packet method, described 

in Chapter II, requires two separate time evolutions, one of which (to calculate M0ller 

states) benefits from the use of the interaction picture, and one of which (the calcula- 

tion of correlation functions) is done in the Schrödinger picture with the aid of absorbing 

boundary conditions (Section 3.4). The split-operator technique of Section 3.1 is the al- 

gorithm of choice for propagation in the Schrödinger picture, which is used as a reference 

for comparison with the interaction-picture results. Two potentially valuable approaches 

to wavepacket propagation in the interaction picture were set aside when they failed to 

produce accurate results reliably. These methods, the finite-basis approach and Tannor's 

"Heisenberg" approach, are described in Chapter IV, along with a third approach that is 

accurate and straightforward to implement, but cannot provide a means of reducing compu- 

tational grid sizes. The only interaction-picture technique that consistently gave accurate 

results on a variety of potentials is the sequential nested interaction picture, described in 

Section 3.5.4. Results based on the application of the sequential nested interaction picture 

appear in Chapters V and VI. 

1.3 Quantum Reactive Scattering in One and Two Dimensions 

The research reported here deals primarily with one-dimensional quantum-mechanical 

models of reactive scattering. To illustrate how the techniques can be applied to problems 

of higher order, the two-dimensional theory is also developed. Both theories are developed 

in the familiar Schrödinger picture of quantum mechanics. 

In time-dependent calculations, scattering events are modeled using complex wave- 

functions that evolve in a vector space that is viewed in two equivalent representations. 

In the position or "coordinate" representation, the amplitude of the wavefunction gives 

the distribution of its probability amplitude across the position coordinate x. In the mo- 

mentum representation, obtained by Fourier transform from the position representation, 

the amplitude of the wavefunction represents its momentum, p = fik. It is often conve- 
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nient to express momentum in terms of k rather than p. This is done freely henceforth 

in this document, particularly since the system of atomic units is always used, in which 

Planck's constant h = 1. A system involving n particles of mass m*, then, is described 

by a single wavefunction \tjj) of reduced mass //, position (x) = (^|x|V'), and momentum 

(p) = (^l p \ip) in a position and a momentum space of dimension 3(n - 2). The reduction 

in dimension from 3n to 3(n-2) is accomplished by fixing the center of mass and neglecting 

any overall rotation(20). 

Time-dependent methods are based on numerical solutions of the time-dependent 

Schrödinger equation, 

*ft^(i))=H|^(i)>, (1-3) 

which, for time-independent Hamiltonian operators H, has the formal solution, 

|^(i))=e-iH(i-'o)/ft|^(io)), (1-4) 

where \ip (to)} is the state vector at time t = t0. Therefore, the Hamiltonian conveniently 

expressed as 

H = Ha + V(x), (1.5) 

must be derived. Given a numerical approximation for the interaction potential V(x) be- 

tween the reactants, all that remains is to add the asymptotic potential Ha, containing the 

kinetic energy of the reactants' translation toward each other, plus any internal vibrational 

or rotational energy the reactants carry. The asymptotic potential, Ha, plays an impor- 

tant role in the construction of M0ller operators (Section 2.2) and the interaction picture 

(Section 3.5). The numerical approximation of the full Hamiltonian is used to derive the 

time-evolution operator U(t,t0) = e~m{-t~to)/h, which governs the behavior of the system 

throughout the collision process. Time-dependent numerical methods use approximations 

of \J(t', t) over successive short time intervals At = t'-t to evolve the system wavefunction 

over the required time period. 

1-6 



www.manaraa.com

1.3.1 The One-Dimensional Interaction Hamiltonian. For purposes of illustra- 

tion, the simplest collision to describe is that of two structureless particles with no angular 

momentum. In this case, the motion of the wavefunction relative to center-of-mass coordi- 

nates is one-dimensional. Using bold type for operator variables, the Hamiltonian for this 

one-dimensional system can be written 

H = Ha + V(x), (1.6) 

where the potential operator V(x) = V(x) describes the interaction of the two particles, 

and the asymptotic Hamiltonian, 

Ha   =     lim   H 
■;— X—>±oo 

=   ^, (1-7) 

is obtained in the asymptotic limit where    lim  V(x) = 0.   Here k represents the one- 
x—>±oo 

dimensional momentum operator conjugate to x. Equation (1.6) is not only a convenient 

way of accounting for the kinetic- and potential-energy contributions to the full Hamil- 

tonian; it will also serve as a motivator and guide to the construction of the interaction 

picture in Section 3.5. 

1.3.2 Two-Dimensional Interaction Hamiltonians. If one of two colliding par- 

ticles is a diatomic molecule consisting of atoms labeled A and B, and the other particle 

is an atom labeled C, the resulting three-body system requires 3(3 - 2) = 3 coordinates 

to locate each atom in the rotationless center-of-mass reference frame. If the angle given 

by the vertices A, B, and C is fixed—for example, if the atoms are constrained to move 

along a single line—then the resulting collinear system requires only two coordinates to 

locate the atomic positions. One possible choice of coordinates, called bond coordinates, 

is illustrated in Figure 1.2, where the coordinate x is the distance between atoms A and 

B, and y is the distance between atoms B and C. Bond coordinates have the advantage 

of generality, describing all possible arrangements equally well. The Hamiltonian in bond 
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Figure 1.2     Bond coordinates for three collinear bodies. 

coordinates is 

Hh 
h2k2

x     h
2k2

y    n2kxky + + V(x,y), 
1[iAB     2fiBC        mB 

where k^ and ky are the momentum operators conjugate to x and y, 

(1.8) 

ßAB — 
VflA +mß 

(1.9) 

and 

V-BC 
mBmc 

TUB + mc 
(1.10) 

are the reduced masses of the two pairs of adjacent atoms, and m^, TUB, and mc are the 

masses of the respective atoms(21). In the asymptotic limit of large x (or y), the atom A 

(C) no longer interacts with the diatom BC (AB) and V (x,y) -> V (y) (or V (x)). The 
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Figure 1.3     Jacobi coordinates for three collinear bodies. 

disadvantage of bond coordinates is manifest in these limits, where the Hamiltonian in 

equation (1.8) is not separable like equation (1.6) because of the kinetic coupling term 

H2kxliy/mB- 

Using an alternative choice of coordinates, called Jacobi coordinates (Figure 1.3), the 

asymptotic Hamiltonian becomes separable, at the cost of using different Jacobi coordi- 

nates for different arrangements of particles in the asymptotic regions before and after the 

collision. In general, the three atoms A, B, and C may be arranged in any of four ways: 

• all three atoms may be relatively close together and bound or strongly interacting 

(ABC), 

• all three may be relatively far apart and not interacting (A + B + C), 

• A and B may form a diatom while C is relatively distant (AB + C), or 

• B and C may form a diatom while A is relatively distant (A + BC). 
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These four cases are termed "arrangement channels" in the context of molecular 

collision theory. However, as far as a collision event is concerned, the first case cannot be 

an asymptotic state of the reactants or products. It must be either a temporary transition 

state in the midst of the collision, or a bound state. A bound state cannot be the state prior 

to collision, since there are no free particles to collide with one another. Neither can it be 

the state following the collision in a conservative system which began in an unbound state. 

For computational simplicity, it is also possible to exclude the three-body case A + B + 

C by assuming that the system begins in one of the two remaining arrangement channels 

and restricting the energy of the collision so as to make complete dissociation energetically 

inaccessible. The interaction then becomes a one with only two possible outcomes, the 

arrangements AB + C and A + BC. 

Each of the two arrangements has a corresponding set of Jacobi coordinates. In 

Figure 1.3, the two arrangements are labeled with the subscripts 7 = 1 and 7 = 2. In 

each arrangement, the coordinate R^ represents the distance separating the two members 

of the diatom, and r7 is the distance between the free atom and the center of mass of the 

diatom. The Hamiltonian in Jacobi coordinates is given by 

_^x + _r*x+V7(r7,A7), (1.11) 7    2m7   '    2/x, 

where m7 is the mass of the lone atom, and fx^ is the reduced mass of the atom-diatom 

system in the arrangement channel labeled by 7. Thus, for one labeling of the two ar- 

rangements, 

(mA + mB)mc n 10x 
Mi — J \L-LZ) 

mAmBmc 

and 

mA (mB + mc) ,, , ~\ 
mAmBmc 
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In the asymptotic limit of large r7 the Hamiltonian reduces to the sum of a free-particle 

Hamiltonian and an internal Hamiltonian, 

m   =      lim   ILy 

h2\4       ft2k2 

2m7        2/x7       r7->±oo 

/i2k2 7i2k2 

In equation (1.14), V]nt(Ry) = hm V7(r7,Äy) is the internal potential of the diatom, 

and kr7 and k^ are the momentum operators conjugate to r7 and Ry respectively. The 

last term in equation (1.14), 

h2k2 

HL = -2^L+V2u(Ä,), (1-15) 

is the Hamiltonian of an isolated diatom, and 

..   = Zx 
rel      2m-, 

HL = -^L (1.16) 

describes the behavior of a free particle of mass m7 with an energy equal to the relative 

kinetic energy between the atom and diatom. In general, m7 ^ my, /x7 ^ /Jy, and 

V^r^Ä-y) ^ \H'(ry,.Ry); the two Hamiltonians are as distinct as the arrangements 

themselves. Thus, in an exchange reaction, such as AB + C —»• A + BC, one must 

use both coordinate systems in order to take advantage of the simplified form (1.14) for 

both the reactant and product asymptotic Hamiltonians. The requirement for multiple 

coordinate systems and Hamiltonians, and the need to change coordinate systems in mid- 

collision, present the principal difficulties with the use of Jacobi coordinates in scattering 

calculations. 

1-11 



www.manaraa.com

II.   Time-Dependent Molecular Scattering Theory 

The channel-packet method is a technique for obtaining selected elements of the S matrix 

by means of time-dependent quantum propagation techniques. Such techniques are based 

on the numerical solution of the time-dependent Schrödinger equation, 

ihjt\i>(t)) = n\^(t)). (2.i) 

The formal solution to the time-dependent Schrödinger equation for a time-independent 

Hamiltonian operator H is 

\tj,(t))   =   U(Mo)bK*o)) 

=   e-^-^liPito)), (2-2) 

where |^(*o)) is the state vector at time t = t0, and U(Mo) = e-
iH(i_to)/fi is the time- 

evolution operator. Commonly, it is convenient to set to = 0, and use the shorthand 

notation U(t) = U(*,0). 

There have been several applications of the channel-packet method to a variety of 

scattering problems. In particular, the method has been used to compute state to state 

S-matrix elements for the collinear H + H2(n) ^ H2(n') + H reaction(22,23) and more 

recently for a two dimensional model OC + OH(n = 0) ^ OCO(n = 0) + H reaction(24). 

In a larger three-dimensional calculation, Dai and Zhang have used the channel-packet 

method to compute exact state-to-state S-matrix elements for the H + 02 reaction(12). 

One common advantage shared by all of these calculations is the facility with which the 

channel-packet method provides S-matrix elements over a wide range of energies. In addi- 

tion to exact quantum calculations, the channel-packet method has also been useful in for- 

mulating several approximate strategies for computing S-matrix elements. These include 

a new semiclassical method for computing S-matrix elements developed by Garashchuk 

and Tannor(25), and the application of the multiconfiguration time-dependent Hartree 

approach to computing S-matrix elements by Jackie and Meyer(26). 
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2.1    Channel Packets 

The two-dimensional asymptotic Hamiltonian of equation (1.14), Hi, has two compo- 

nents, nld and H]nt. Since both Hjel and U]nt have known eigenvalues and eigenstates, 

eigenstates of the asymptotic Hamiltonian can be constructed in Jacobi coordinates as 

direct products of free-particle eigenstates, \kr^) = |/c7), and diatomic eigenstates, I7): 

Hl\k„7)   =   (H^ + H7nt)|fc7)|7> 

=   H^|fc7)|7) + |fc7)H7ni|7) 
h2k2 

=    ^\k1)\1)+E1\k1)\1) 

=    (S^)1^' (2-3) 

where the index 7 is now used to label the channel, a term that includes both the arrange- 

ment channel and the internal eigenstate of the diatom. For each arrangement channel, 

there exists one channel for each eigenstate of the internal Hamiltonian H]nt. 

Each channel is associated with a single eigenstate I7) of the diatom, and infinitely 

many free-particle eigenstates |fe7). Rather than attempting to consider the non-square- 

integrable states |fc7) I7) = |/c7,7) individually, it is useful in collision modeling to construct 

localized linear combinations of the |fc7,7), 

/-00 

C(oU*)) = y_oo
dM±(^) 1*7,7) • (2-4) 

Equation (2.4) defines two wavepackets, or "channel packets," in the channel labeled 7. 

The channel packet \tp]n) is expanded in terms of the eigenstates |fc7,7) of the 7-channel 

Hamiltonian, where the expansion coefficients n+ (fc7) are chosen to be appreciable over 

some particular range of momenta fe7. The packet |^ut) is also expanded in terms of 

the eigenstates |fc7,7), with expansion coefficients rj_ (fc7). The channel packets \^]n) and 

\iplut) will later represent reactants and products, respectively, in the channel 7. 
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It is convenient to choose the expansion coefficients r]± (fc7) so that the state 

is a complex Gaussian in the momentum coordinate fc7, 

i[P in(out) 

V±(kr)=  27r(Ak)l 
4 

exp (2.5) 

where (Afe)0 is the uncertainty in the momentum, and the constants r7o and fc7o fix the cen- 

ter of the Gaussian's representation in coordinate and momentum space, respectively(27). 

The Gaussian is chosen because it can be manipulated analytically, and can be defined 

to include whatever particular range of values of momentum fc7 may be of interest. Since 

the Fourier transform of a Gaussian is also a Gaussian, the coordinate representation of 

such a channel packet in Jacobi coordinates is the direct product of a Gaussian in the r7 

coordinate and a diatomic eigenfunction in the Ry coordinate. Such channel packets are 

the basis for the method described in Section 2.3 for evaluation of matrix elements of the 

scattering operator. 

2.2    The Scattering Operator 

The scattering operator S is the keystone of quantum molecular scattering theory. 

The scattering operator relates the reactant and product states, \ipin) and |Vw)» of an 

interaction as 

h/w) = shu. (2.6) 

For the scattering operator to exist, the interaction potential *V(x) must satisfy the con- 

ditions^) 

1. V(x)—0 (x~3~e) as x —y oo; that is, the potential approaches zero more rapidly than 

does x~3 in the asymptotic limit; 

2. V(x)=0 (x~2+e) as x -> 0; that is, the potential becomes unbounded less rapidly 

than x~2 at the origin; and 

3. V(x) is continuous nearly everywhere for 0 < x < oo. 
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It is important to note that even though the pure internuclear Coulomb potential does 

not meet conditions 1 and 2 above, the presence of atomic electrons serves to make the S 

operator formalism applicable to atomic and molecular problems. Atomic electrons shield 

nuclear charges from one another at large separations, and add to the interatomic repulsion 

at small distances. 

It is useful to express the scattering operator as the product 

(2.7) 

where the M0ller operators are defined as 

fil=   lim  eiHte-iH2i. (2.8) 

The M0ller operators are isometric (fi^ft-t = 1), and are unitary (£"4 = ti±l) only if no 

bound states exist. M0ller operators also obey the "intertwining" relation(28) 

Hfi£=J2XHZ, (2.9) 

where H is the full Hamiltonian, and Hj is the asymptotic Hamiltonian in arrangement 

channel 7. The intertwining relation will be important in Chapter 3. In terms of the 

Möller operators, the probability of scattering from a given reactant state \i/S?n) to a given 

product state ipl^) is giyen by 

pl'7     = 

(2.10) 

(Ä* g7'7 i> ml 

2 

(Ät Qi'^X c) 
(tfü *l) 

2 
) 

*1) = where 7 and 7' indicate the reactant and product channels, respectively. The states 

fi-   Ät) and k+> = Ml IV'Zn) are called M0ller stateS" 

The scattering operator is customarily evaluated in its energy or momentum repre- 

sentation, called the S matrix. S-matrix elements are expressed in the momentum repre- 
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sentation as(31) 

=    {k'1,,i-\k1,1+). (2.11) 

The density of states, 

K"y          
dE 

d\k^\ 

d   h2k2 

d|fc7| 2//7 

h2 \ky\ 
(2.12) 

is introduced in equation (2.11) to convert the S matrix from energy normalization to 

momentum normalization. The absolute value squared of the S-matrix element S7,'7, is 

the probability that a reaction that starts with reactants in the state |fc7,7) will yield 

products in the state V,y). 
The right-hand side of equation (2.11) is the inner product of the vectors 

|/c7,7+) = 0X|fc7,7) (2.13) 

and 

|*V,7,-> = ßl'|Av,7,>, (2.14) 
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which are eigenstates of the full Hamiltonian. This can be shown using the intertwining 

relation (2.9), together with equations (2.13) and (2.3): 

H|fe7,7+>    =   Hfij 1*^,7) 

=   ftXH2|fc7,7> 

(2.15) 

A similar argument shows that the states |fc7,7-)> are also eigenstates of the full Hamil- 

tonian. 

Two observations regarding the states |fe7,7±) are useful in the development of the 

channel-packet method in Section 2.3. First, |fe7,7±> satisfy the orthogonality relation 

(fc7„7'±|fc7,7±> =  (rif^aüti^h^i) 

=   <5y7(fc7,,7'|A;7,7) 

=    <5y7<!> (fey — fe7) . (2.16) 

Second, if the full Hamiltonian H is time-independent, then solution of the time-dependent 

Schrödinger equation (2.1) for the time evolution of |fe7,7±) yields, 

|fe7,7±;£) U(t)|fc7,7±) 

e-iHt/fi|fe7,7±> 

=   exp -»(^(TO+^vOft |fe7,7±) (2.17) 

2.3    Computation of S-Matrix Elements using Channel Packets 

Channel packets, introduced in Section 2.1, were developed and used by Weeks and 

Tannor for computing matrix elements of the scattering operator(29,30). In this time- 

dependent method, a pair of wavepackets, \^]n) and ^m\ defined using equation (2.4), 
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is used to derive S-matrix elements S^,'7fc  for a broad range of momenta, fc7 and k'y, within 

a particular pair of reactant and product channels 7 and 7'. 

The calculation begins by applying a numerical time-evolution scheme like those 

developed in Sections 3.1 and 3.2 to the channel packets to produce the M0ller states 

=      lim ^/he-m2tß^} 
t—>—00 

-iHr/h mlr/h e —■'~e IO 

and 

.nl ^ out 

J-Hr/h-ml r/h 
Ä), (2-19) 

where ±r are values of time t, defined such that essentially all of the product and reactant 

wavepackets experience only the asymptotic potential Ha for all t greater than +r and less 

than —r. The coordinate representations of the states \tp]n) and ViLt) are chosen to be in 

the interaction region of the potential at time t — 0. The effect of the Möller operator Q\ 

on the initial state \tp]n) is to propagate it backward from time t = 0 to time t = — r using 

the asymptotic Hamiltonian H2 until the resulting intermediate state exits the interaction 

region, and then to propagate the intermediate state forward to time t = 0 again using 

the full Hamiltonian. Similarly, the product state ■^Pout \ is propagated forward from time 

t = 0 to time t — +T under Eß', and back to time t = 0 under H. The resulting Möller 

states can then be propagated under the full Hamiltonian, using the methods described in 

Chapter III. 

The Fourier transform of the time-evolved M0ller state \<ip\ (t)) = U(t)f^ Win) is 

/oo 
dtexp(iEt)\J(t)\^l) 

■00 

dtexv(iEt)\J(t)nl\4>ln). (2.20) 
/ 

00 
00 
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The channel packets \i]Pin) and ip^) can be expanded as in equation (2.4), in terms of the 

eigenvectors |fey,7) and Ay,7') respectively. Substitution of equations (2.18) and (2.4) 

into (2.20) yields 

/oo roo 
diexp {iEt) V(t)rt[ /     dfey7,+ (fey) |fc7, 7) 

00 ./—00 
/oo roo 

dtexp (iEt) V{t) /     dfc7?,+ (fey) |/c7,7+). 
-OO J — OO 

(2.21) 

Equation (2.17), substituted in equation (2.21), gives 

/oo / F1 \ Z"00 

dt exp f i-t J e-iH'/fi /     dfc777+ (fey) |fey, 7+) 

/oo 
dfe77?+(fc7)|fe7,7+) 

-00 

*(*z+E, =   /_~*exp(if()expL   hy^ 

=   2TT r**,« (j5- (*?-*?)) 1+(*l)l*T 7+) 

- 2"Mr r° lot, [«(t^ - *,)+< (*;.+*,)] 17+ (fc,) m, 7+> 
J—00 

{??+ (+fc7) |+A;7,7+) + 7?+ (-fey) |-fey,7+)} > 

»i |fcyi j—00 

27r/z7 (2.22) 

where the two degenerate eigenstates corresponding to positive and negative momenta +fey 

and -fc7 are the only terms of the integration singled out by the delta functions. The inner 

product of this expression with the product M0ller state is then 

+ <HV)^(+^)S74T„+fc7 

+ <(+fcV)^+(-MS74T/i_fe7 

(2.23) 
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The channel-packet method allows a piecemeal evaluation of the S matrix by consid- 

ering four special cases of equation (2.23), where the expansion coefficients r)± are chosen 

so that either 

1. V+ (+fey) = V- (~*y) = 0> with (r7 (-r)) > 0 and (r'y (+r)^ > 0; 

2. 7?+ (+ky) = v- (+fy) = 0, with (r7 (-r)) > 0 and (r^ (+r)J> < 0; 

3. r?+ (-fc7) = rj*_ (-fy) = 0, with (r7 (-r)) < 0 and (r^, (+r)^ > 0; or 

4. 77+ (-fey) = < (+fy) = 0, with (r7 (-r)) < 0 and ^ (+r)^ < 0. 

In case 1, for example, the reactant wavepacket starts to the right of the origin, with all 

free-particle momentum directed to the left. The product wavepacket finishes up to the 

right of the origin, traveling to the right. Equation (2.23) reduces to 

il>l 
A^ = 2iJ^^+k'^-^s%^ (2.24) 

in this case. Referring to equation (2.20), it can be seen that the left-hand side of equation 

(2.24) may also be written, 

( $t | A\ (E))   =   U-\r dt exp (iEt) U(t) </>! ) 

=     /°° dt exp {iEt) Ut U(t) V+)- (2-25) 
J—oo ' 

This expresses (tjj. A\ (E)) as the Fourier transform of the correlation function, 

<7^(t)= (vi'|u(i)|v>T) (2.26) 

The correlation function (2.26) is the inner product of one Malier state and the time 

evolution of the other M0ller state. Both M0ller states can be calculated directly by the 

propagation methods of Chapter III, as applied to equations (2.18) and (2.19). Using 

equation (2.26), one M0ller state is evolved in time from t = —oo to t = —oo, and its inner 

product with the other M0ller state is evaluated as a function of time. Then the Fourier 

transform is performed to produce lijp_ A\(E)\.  By rearranging equation (2.24), one 
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quarter of the S-matrix for the energy range of interest is then given by 

c7;,7      "•  , a+k',-k    ~ « 

\k-y *fl A\{E) 

K" ^     27r\|   /y^7   tfü(+fy)r7+(-fcy)' 
(2.27) 

The other three cases, 2 to 4, deliver the rest of the S-matrix, according to the general 

formula, 

c7 ,7 D±k' ,,±ky 7 ' 

h' V |fc7|       (y/|^(£)) 
2TT\ iiy^ vt^±kr^v+^±kiy 

(2.28) 

providing the remaining three combinations of reactant and product momenta. 

2-10 



www.manaraa.com

III.   Computational Methods 

The channel-packet method requires time-dependent propagation of wavepackets, first to 

arrive at the Möller states, then to evaluate the correlation function. A number of methods 

have been developed (34) to solve the time-dependent Schrödinger equation (2.1) numer- 

ically for \ip(t)). Two such methods, the split-operator and the Lanczos algorithms, are 

discussed in Sections 3.1 and 3.2. Additional numerical techniques to apply these methods 

more efficiently to channel-packet calculations are presented in Sections 3.4 and 3.5. 

3.1    Split-Operator Propagation 

The split-operator scheme of Feit and Fleck originated in a homologous problem 

in optics(35,36). The technique, suitable for use with time-independent Hamiltonians, 

is based on the separation of the time-evolution operator into separately-diagonalizable 

kinetic- and potential-energy portions: 

U(t0 + At)    =    e-*HA*/fte-iHto/fi 

=   e-iWWWu (to) 

=    e-iVAt/fte-iTAt/fte-i[T,V]At!«/2»2
U(4o)+0(At3) (3.1) 

where T and V are kinetic- and potential-energy operators respectively, and [T,V] = 

TV — VT is their commutator. The Zassenhaus formula(37) 

eA+B = eAeBe|[B,A] + 0([A _ B, [A, B]]) (3.2) 

is required in order to obtain equation (3.1), since T and V, in general, do not commute. 

The split-operator formulation of the time-evolution operator, 

U(«o + At) = e-™/2ViTAf/fie-iVAt/2ßU (t0) + O (At3), (3.3) 

can be derived from a Taylor-series expansion of equation (3.1). Equation (3.3) has the 

benefit of retaining the second-order accuracy of (3.1) while involving only the two opera- 

tors T = P2/2/x and V by themselves, eliminating the commutator. 
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The kinetic-energy evolution operator, e'
iTAt/h = e-

ihk2At/2^, is diagonal in the 

momentum representation, and the potential-energy evolution operator, e-
?VAt/2ft

) is di- 

agonal in the coordinate representation. Thus, the effect of the time-evolution operator 

on a state \ip (to)) over a short interval At can be calculated easily with the help of two 

fast Fourier transforms (FFTs). The Fourier transform and its inverse have the effect of 

converting vectors back and forth between the momentum and coordinate representations. 

The calculation 

TP{x,t0 + At)   =   (x\ U(At) h/> (to)) 

=     (x\ e-iVAt/2he-iTAt/he-iVAt/2H ^ ^Q)) 

=    (x\ e~™Atl2h fdx' \x') (x'\ fdk \k) {k\ e-
iTAt/h fdk' \k') (k'\ 

x   fdx" \x") (x"\ e~iVAt/2h fdx'" \x'") (x'"\ </> (to)) 

=       fdx' (X\ e-VAt/2fi |^   fdk ^ |fe)   fdk, (fc| e-iTAt/H |^ 

x   / dx" (k' \x") I dx'" (x"\ e-
iVAt'2h \x'") ri, {x'", t0) 

=     / dx'6 {x - x') e-
iV^At'2h f dk (x' \k) I dk'6 {k - k') e~ik2At^h 

X   / dx" {k \x") e-^(z")At/2* j dx,nö (j, _ xn^ ^ (^ ^ 

_     c-iV(x)At/2h    1       f dkeikxe-ik2At/2hii 

x _L  /dxne-ikx»e-iV{x»)At/2h^ /,, ^ (34) 

can be performed using an iV-element complex vector to approximate any function x {x, t) = 

(x \x(t)), or its Fourier transform, 

x(M)  =  (k\x(t)) 
I POO 

=   -±= /     dxe-^xM)- (3-5) 
V27T J-oo 

The diagonal operators e~iWAt/2h and e~iTAt/2h can be represented by iV-element arrays. 

At each time step, the wave function is multiplied, element by element, by the diagonal 

operator elements, e-iV(xi)At/2h^ an(j the reSulting vector transformed to the momentum 
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representation by FFT. The vector is then multiplied by the diagonal operator e-«fc; At/2fi/^ 

transformed back to the coordinate representation by inverse FFT, and multiplied by the 

operator e-iV(xi)At/2h again. For a time-independent Hamiltonian, the time evolution of 

|V> (*)) can be calculated by repeated applications of equation (3.4), using the same diagonal 

operators. 

3.2   Lanczos Propagation 

The split-operator technique is a fast, robust method of obtaining solutions to the 

time-dependent Schrödinger equation for time-independent Hamiltonians.(34) However, 

there are cases, as in the interaction picture (see Section 3.5), where the form of the time- 

evolution operator makes it impractical to separate the evolution operator into portions 

diagonalizable by FFTs. In such cases, the wavepacket may be propagated by the Lanczos 

method(44,45). In the Lanczos approach, the Hamiltonian is represented using basis vec- 

tors of a Krylov subspace generated by the Hamiltonian. The basis vectors of the Krylov 

subspace are formed by repeated operation of the Hamiltonian on some initial state |</>0): 

K) = H"|0o). (3.6) 

It is generally neither necessary nor desirable to use more than a few basis vectors. Com- 

monly, the dimension M of the Krylov subspace is between 5 and 8. An orthonormal set of 

basis vectors \qn) is obtained from the non-orthogonal \(pn) using Gram-Schmidt orthogo- 

nalization, and used to form an M x M finite-basis approximation of the Hamiltonian(45), 

H HM 

ai ß2 0 0 

ß2 OL2 ßz 0 ... 0 

0 ßz «3 • . : 

0 •. 
'■• ßM-1 0 

• "-. ßM-1 OiM-1 ßu 
0 0 0 ßu OiM 

(3.7) 
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Matrix elements in equation (3.7) are given by 

an = (qn\H\qn), (3.8) 

ßn \qn) = H |<?n_i) - an-i \qn-i) - ß*^ \qn-2), (3.9) 

ßi = 0, ki) = l^o), |<7o> = I ), (3-10) 

where | ) is the null vector. The orthonormality of the basis vectors \qn) is used to derive 

the subdiagonal values, 

ßn = \ßn\ = ||H \qn^) - an_i \qn-i) - ßn-i l^-2>||, (3.11) 

from equation (3.9), employing the norm defined by 

IIIX)II = \/(X|X), (3-12) 

and choosing all ßn to be real, since employment of the norm renders the phase arbitrary. 

Within the reduced dimensionality of the Krylov subspace, the Hamiltonian is easily di- 

agonalized. Once the Hamiltonian is diagonalized, the time-evolution operator is readily 

expressed as a matrix, and the time-evolved state vector, 

\i;(t + At)) = e-mAt/h\iP(t)), (3.13) 

may be expanded in terms of the normalized basis vectors \qn). This process is iterated to 

advance the initial state \ip (to)) over a sequence of small time steps, in order to arrive at 

a final state |^(i)). 
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Suppose the propagation is performed in the momentum representation. Then the 

evolution from time t = tj-\ to t = tj is expressed, 

(*#(*,-)>     =    (fc |U (^, *,•_!) |^(tj-l)> 
M M 

n=l ro=l 

Here qli) denotes the nth Krylov vector in the basis used to represent the Hamiltonian 

H(ij) and generate the state vector \ip{tj)). The choice q(j = |^(*j-i)>, using the 

previous time step's state vector to seed the present time step's basis, allows equation 

(3.14) to be simplified to 

M M 

n=\ 7n=l 

M M 

71=1 771=1 

M 

= E^l^^lu^'^-1)^')- (3-15) 
71=1 

3.3    Computational Bottlenecks 

The channel-packet method, based on time-dependent propagation, provides an effi- 

cient alternative to time-independent close-coupled type calculations (2-6) for computing 

S-matrix elements. However, peculiarities of the FFT and the time-dependent behavior of 

Gaussian wavepackets both may cause the method to require unnecessarily large coordinate 

grids and attendant long computation times. 

The FFT is much faster to calculate than the equivalent discrete Fourier transform 

for large numbers N of points in space at which functions are evaluated. However, FFTs 

conflate the origin x0 and the iVth grid point xN, artificially imposing periodicity on the 

potential. A wavepacket which attempts to propagate off the edge of the grid at x = XN 

instead "wraps around" and appears on the other side, encountering the potential at 

x = 0 instead of the correct potential at quasi-infinite x. The same problem occurs in the 

momentum representation for wavepackets, the absolute value of whose momentum begins 
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to exceed the value that defines the positive or negative edge of the momentum grid. 

The "wrapping around" of all or part of the momentum representation of the system's 

wavefunction results in immediate severe degradation of the accuracy of the simulation as 

the momentum abruptly reverses and takes on the opposite sign. The common, brute-force 

way to avoid these grid-related errors is to make the grids so large that the wavepackets 

never approach the edges in either representation. The additional overhead requirement 

is compounded by the fact that the fastest FFTs constrain the allowed number of grid 

points N. (In the simplest implementation, the constraint is N = 2n, where n is a natural 

number.) 

Another factor tending to force the grid to be larger is the well-known spatial spread- 

ing of Gaussian wavepackets governed by free-particle Hamiltonians(27). For the channel- 

packet method, this means that grids must be large enough to accommodate spreading, as 

well as translation, of the product and reactant states as they are propagated backward 

and forward in time under the asymptotic Hamiltonian. Large grids lead in turn to long 

computation times for the FFT. Both of these grid-enlarging factors can be ameliorated, 

and the grid size reduced significantly, through the use of absorbing boundary conditions 

and the interaction picture. 

3.4    Absorbing Boundary Conditions 

Absorbing boundary conditions can combat the spurious periodicity of the FFT grid 

by including an imaginary component in the potential V(x) for values of x near the edges 

of the grid(23,38-43). A complex potential V{x) = V (x) ± if (x), for some real function 

/ (x) that is zero over most of the grid and begins to increase near the edges of the grid, 

adds a real exponential decay to the forward and reverse time-evolution operators. Careful 

choice of the function / (x) can assure that the wavepacket is absorbed before it crosses 

the edge of the grid, and is not reflected or transmitted to any significant degree. 

The success of the application of absorbing boundary conditions to the channel- 

packet method lies in the computation of the correlation function (2.26).   The product 

M0ller state if_ ) is localized in the interaction region near the origin, so the correlation 

function C7'7 (t) = (V-  U(t) V+) need be evaluated only in this restricted region, once 
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the M0ller state has been calculated. Computing the correlation on an FFT grid confined 

to this region saves time, but leads to invalid results if absorbing boundary conditions are 

not employed to keep portions of the evolving reactant state \t}P+ (t)) which propagate out 

of the interaction region from "wrapping around" and spuriously returning from the other 

side. If the imaginary potential is confined to the portion of the grid where the product 

M0ller state is zero, it does not effect the correlation function, so S-matrix elements may be 

derived correctly despite the altered potential. Calfas and Weeks(23) have demonstrated 

this technique in two dimensions with absorbing boundary conditions of the form / (x) = 

Aexp  (x — XQ)  /B for the collinear H + H2 ^ H2 + H reaction, using the Liu-Siegbahn- 

Truhlar-Horowitz (LSTH) potential(62-64). 

3.5    The Interaction Picture 

Propagating the wavepackets in the interaction picture can nearly eliminate spread- 

ing, as has been confirmed for simple one-dimensional potentials(46-49). The interaction 

picture has also been applied to molecular predissociation in two and three dimensions, 

where a single arrangement channel and corresponding Jacobi coordinates are sufficient(50- 

52). The channel-packet approach allows the interaction picture to be extended for the 

first time to reactive scattering requiring two arrangement channels. 

3.5.1 Essentials of the Interaction Picture. In the usual (Schrödinger) picture 

of quantum mechanics, the time-dependent behavior of state vectors is governed by the 

time evolution operator U(t,io) = e~iH(-t~t°^h, for time-independent Hamiltonians H. 

An alternative approach, known as the interaction picture (also called the intermediate 

or Dirac picture), originated in time-dependent perturbation theory. In time-dependent 

perturbation theory, the Hamiltonian operator is defined as the sum H = Ho + Hi, where 

Ho is a time-independent Hamiltonian susceptible of direct analysis, and Hi is a small, 

time-dependent perturbation(53). The construction of the interaction picture begins with 

such a splitting of the Hamiltonian(54). 
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In the interaction picture, the Hamiltonian is most commonly expressed, 

H = H0 + V, (3.16) 

where Ho is the asymptotic Hamiltonian Ha and V is the potential, as in equation (1.5). 

However, this is not the only possible expression for the Hamiltonian, and is not necessarily 

the most useful. Therefore, let us retain the more general notation, 

H = H0 + H1, (3.17) 

where Ho is any time-independent portion of the full Hamiltonian. If the time-evolution 

operator corresponding to Ho is denoted, 

Uo (t) = e-
mot'h, (3.18) 

the transformation from the Schrödinger picture to the interaction picture is 

\rP(t))j   =   Uj(t)hK*)>s 

=   e^^lVW)^, (3.19) 

where the subscript I labels the interaction picture, and the subscript S refers to the 

Schrödinger picture. It is seen readily from equation (3.19) that \ip (0))7 = \ip(0))s. 

The Schrödinger equation in the interaction picture is 

»A|hKi)>/ = «if [ut(*)hM*)>s 

= iK^l\i>(t))s + ihXJl(t)ft\i,(t))s 

= -Uj (t) Ho \t(> (t))s + U0 (t) (H0 + Hi) |V (t))s 

= uJ(t)Hi|V(t)>s 

= uJ^HiUoWlVW)/ 

= H.WIV'W); (3-20) 
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where the interaction-picture Hamiltonian is defined as 

H/(t) = Uj(t)HiU0(t). (3.21) 

In other words, H/ (t) is constructed in such a way as to make the form of the Schrödinger 

equation in the interaction picture the same as in the Schrödinger picture. Hence, the 

formal solutions of the Schrödinger equation in the interaction picture take the analogous 

form, 

\ip(t))I = VI(t,t0)\^(t0))Ii (3-22) 

for some time evolution operator U/(t,t0) and initial state |V» (*()))/• However, since the 

Hamiltonian Hj (i) is time-dependent, the simple expression Vj(t,t0) = e~iHl(-t~t°^h 

is not valid. Instead, integration of the Schrödinger equation with the initial condition 

Uj (to>*o) = 1 gives tne perturbation expansion, 

U, (t, t0)   =   1 + -^ f H7 (*') U/ (if - t0) dt' 
n   Jto 

2    rt     rt 

=     1 + ^ y* Hj (if) dt' + (-[)  jT J  Hz (f) H, (t") dfdt' + ■ ■ -(3-23) 

so called because its most common application lies in time-dependent perturbation theory. 

In perturbation theory, the time-dependent portion of the Hamiltonian is, by construction, 

small enough that the series (3.23) converges within the first few terms. For the interaction 

Hamiltonian, the truncated perturbation series may not be of sufficient accuracy for a given 

time interval At = t-to- The Magnus expansion, 

u, (*, to)=i+(j) ft0 
H/ {t,) dt>+K^)2 JC £[H/ {t,)'H/ {t")] dfdt'+"" 

(3.24) 

is a way to redress the convergence problem(55,56). The commutator, 

[H/ (f),H7 (*")] = H7 (t) H, (t") - Hj (t") H7 (f) (3.25) 
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in equation (3.24), can be eliminated by using the equivalent expansion(57) 

Uj(Mo)   =   l-j/*H/(f)A' (3-26) 

-ÖS5 f f (H' (*0 H' (f) ~ 2@ (*" " *0 H/ (*") H' (*')) <^' + - • 
*" Jto .ho 

where 6 (t" - t') represents a Heaviside step function. In time-dependent numerical meth- 

ods employing small-enough time steps At, first-order truncations of the series (3.23), 

(3.24), and (3.26) are equivalent and accurate. If the numerical propagator employs time 

steps that are large enough to require a second-order truncation, equations (3.24) and 

(3.26) provide the better approximation. 

The relationship between the interaction- and Schrödinger-picture time-evolution op- 

erators follows from the definition of the interaction-picture state vector (equation (3.19)), 

l^(*))/   =   Uj(t)|^(t)>s 

=   U0(i)U(t,i0)h/>(to)>s 

=   uJ(t)U(Mo)Uo(to)hK*o)>/. (3-27) 

Hence, the time-evolution operator in the interaction picture can be written 

U/(t,t0) = U0 (t) U (t,to) Uo (to). (3.28) 

3.5.1.1 Alternative Formulations of the Interaction Picture. The construc- 

tion of the terms H0 and Hi is worth a moment of consideration. Since the time evolution 

of a state in the Schrödinger picture occurs as 

|V (t))s = exp H (Ho + Hi) (t - to)/h] |V (to)), (3-29) 

much of the spreading effect of the asymptotic Hamiltonian is counteracted in the time 

evolution of the interaction-picture state if the choice H0 = Ha is made. This is why the 

interaction picture is usually constructed this way. Another attractive choice is H0 = T = 

Y,i (fr2kf/2/Xj), the kinetic-energy operator, which simplifies the calculation of the interac- 
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tion Hamiltonian H/ = e*H0t/fijjie-iH0t/fi ^ making H0 and Hi functions of momentum 

and position alone. The same advantage accrues if Ho = Hre; = 7i2k^/2/z7 is chosen. The 

three choices, H0 = Ha, H0 = T, and H0 = Hrej, are equivalent in one dimension, where 

Ha = T = Hrel- 

Two additional considerations affect the choice of Ho- First, if, as in perturbation 

theory, the effect of Hi is small compared to that of Ho, larger time steps may be taken 

in numerical propagations in the interaction picture(49,50). This favors Ho = Ha, putting 

as much of the Hamiltonian into Ho as possible. Second, however, the interaction-picture 

methods that are the most successful in reducing computational grid size (the nested in- 

teraction pictures described in Section 3.5.4), are implemented using Lanczos propagation, 

which depends on diagonality of Ho in the momentum representation in the construction 

of Krylov basis vectors. In more than one dimension, therefore, the best choice of terms is 

generally not Ho = Ha. This issue is discussed further in Section 3.5.3. 

3.5.2   Scattering in the Interaction Picture. The M0ller states illustrate the 

application of the interaction picture to time-dependent scattering. Since M0ller states are 

defined in the Schrödinger picture at time t = 0, they are equal to their counterparts in 

the interaction picture: 

hk>/ = k±>5- (3-3°) 

For the same reason, the asymptotic reactant and product states are likewise invariant: 

tf ,   ,A   = V7 ,   *)   ■ (3-31) 

Therefore, for example, 

k+>j ■=  !<*+>* = «Is li&>s 

=   (hmoUt(t,0)U2(i)|^)s 

=   U^(0)  lim VMUKfiWl), 
t—*—oo 

«   Ut(0)U(0,-T)UZ(-T)|i&>/. (3-32) 
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where the unit operator UQ (0) is introduced to suggest the form of equation (3.28). The 

general form of the M0ller operators in the interaction picture is 

üIJ=   lim  uJ(0)U(0,i)U2(t) 
t—>=Foo 

(3.33) 

Here, our choice of the operator Ho comes into play.  If the selection Ho = H2 is 

made, then U2 (t) = UQ (t), and equation (3.33) gives 

ill,   =     lim  Uj(0)U(0,t)Uo(<) 
t—»=Foo 

=     lim  U/(0,t). 
t—>=Foo 

(3.34) 

Another potentially useful alternative is to choose Ho = H7^, in the sense of equation 

(1.16). Since H7^ and H7
nt commute, equation (3.33) can be written, 

tf±J   =     lim  \jl(0)V(0,t)V0(t)V]nt(t) 
t—>=Foo 

lim 
t—»=foo 

=     lim  Vj(0,t)Wnt(t), (3.35) 

where \fjnt (t) = exp (—iH^intt/h). The action of these M0ller operators on channel packets 

^m(out)) gives the M0ller states 

\*±)i «1/ ^ 
in{out) ) 

lim  U/(0,i)eiH^'/,i v>7 
ira(out) 

=     lim  U/(0,t)e^t/fi 

t—t^foo 

e=FiE7T/fcU/(0,TT) v>7 
^ in\ma) f 

in(out) i (3.36) 

Thus, with the appropriate choice of Ho, the Möller operators become simple propagations 

in the interaction picture, possibly with a phase shift. 

3.5.3 Wavepacket Propagation in the Interaction Picture. Numerical propagation 

in the interaction picture is not a trivial problem, considering the form (3.21) of the 

Hamiltonian.   Interaction-picture state vectors do not lend themselves to split-operator 
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propagation.   Consider a simple first-order split-operator type propagation over a single 

time step, choosing Ho = H^: 

\4, (t0 + At))j   «   expj-iH/^o + Y)^}^*«)) 

=   eXp L^^W^^e^*"'2™*} |V> (i0)> 
r »At i 

exp, #0ift(to+At/2)k?/2m7 
fi2k2 
ßk^+V7(r7,Ä7) 

xe -tfi(to+At/2)k?/2m. 

2/i7 

W(i„)> (3.37) 

~   eXP    \    2^7 ft 

XV7 (r7, Ay) e-^(*o+At/2)k2/2m7 j ^ (i())) 

=    e-JAtftk|/4M7expr_!^eiß(to+At/2)k2/2m7 

X V7 (r7, Ay) e-^(*o+At/2)k?/2m7 Je<AtM^/4^ ^ ^ _ 

The outer operators, e±iAtfi,k|/4^75 are directly diagonalizable, but the inner exponential 

is not. Alternative formulations of the interaction picture fail to eliminate this problem. 

Thus, beneficial use of the interaction picture requires a finite-basis approach like the 

Lanczos method of Section 3.2, whereby the evolution operator U/ (r) may be diagonalized 

as a single entity. 

The Lanczos approach is workable, though cumbersome unless further refinements 

qi) via equation (3.9) involves are added. The computation of the Krylov basis vectors 

evaluating the vectors 

H/ (tj) \qi)j = U0 (tj) HxUo (tj) fa), , (3.38) 

which, if taken head-on, implies propagation of the state vector under Ho- The effect of 

equation (3.38) is to convert qi\ to the Schrödinger picture, operate upon it with Hi, 

and convert the result back to the interaction picture. If Ho is not a free-particle type 

Hamiltonian, each conversion back and forth involves a propagation over the full time tj, 

not just the incremental time At. What is worse, this double propagation must be done M 
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times for each time step in order to obtain all of the Krylov vectors. Therefore, formulations 

of the interaction picture wherein Ho is not a function of momentum alone incur far too 

much computational overhead to be useful, even when compared to Schrödinger-picture 

propagations on much larger grids. For free-particle type Ho, propagation is not necessary 

in the formation of the basis vectors, but the implicit conversion to the Schrödinger picture 

means no reduction in grid size is achieved, since the full spreading effect of Uo (r) is 

ultimately incurred before being reversed. 

The direct "sequential" approach just described to computation of Krylov vectors 

makes Lanczos propagation in the interaction picture much slower than propagation in the 

Schrödinger picture using the same grid and time step. One possible way around this ob- 

stacle is the finite-basis approach, which spreads wavepackets only over short time intervals 

and does not use Fourier transforms. The finite-basis approach is a new idea, developed 

early in the course of this research project, which failed to find a stable computational 

implementation. The theory and some computational results of the finite-basis approach 

are described in Section 4.3. A better-developed idea that has, in contrast, proved com- 

putationally robust, is the nested interaction picture. 

3.5.4 Nested Interaction Pictures. Tannor and others have observed that a re- 

duction in the number of required grid points in the interaction picture can be achieved 

by optimizing the grid width in momentum space, or the grid-point spacing in coordi- 

nate space(49). They named their invention the nested interaction picture because the 

Hamiltonian becomes sandwiched between one or two additional pairs of operators. 

Two forms of nested interaction pictures have been developed: the so-called P- 

adapted and PR-adapted varieties. In the P-adapted picture, the state vector is 

=   e-*<P>iWVHot/ft |^)s, (3.39) 
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where the expectation value of the momentum operator, 

(P)   =   WJPIMJ 

=   {ip\se-iUQt/hjHot/hPse-mot/hJn°t/h \if>)s 

=   WgPsMs, (3-40) 

is taken to be constant for the duration of a single time step. The unitary transformation 

ei(P)Rs/ft has tjie effect 0f shifting the state vector in such a way as to make its average 

momentum zero. The P-adapted state vector obeys the wave equation 

tft| m = H' |^ , (3.41) 

where 

H' = e-i(P)R-s/fieiH0t/fiHi (Rs)e-m0t/hei(P)ns/h_ (342) 

The PR-adapted picture shifts the origins of both the momentum and the coordinate 

representations, defining the state vector, 

m>>    =    C«(R>P5/» ^ 

=   ei(K)Psße-i{P)Rs/hjH0t/h ^s ) (343) 

where (R) = (ip\I Rj |V>)j = (ip\s R5 \ip)s is the expectation value of the position operator. 

The PR-adapted equation of motion is given by 

where 

H" _ ei{R)Ps/^e-i(P)Rs/^eiH0t/fiHl (Rs) e-iHot/Äei(P)Rs/ße-i(R)Ps/fi- (345) 
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Wavepackets can be propagated using fewer grid points in the nested interaction 

picture because they always remain centered on the grid. Translation of the wavepacket is 

corrected for, but at intermediate points in the calculations the wavepackets still may be 

spread by the effect of Uo- Further overhead is introduced by the necessity of calculating 

the expectation values (R) and (P) for every time step, then using them to update both the 

state vector (3.43) and the Hamiltonian (3.45). This is described in detail in Section 5.1. In 

some cases, the nested Hamiltonian may be simplified using what Tannor's group calls the 

Heisenberg approach. The Heisenberg approach requires an analytical expression for the 

potential, and may fall victim to undersampling of the potential. The underlying reasoning 

and some computational results of the Heisenberg approach are described in Section 4.2. 

The most accurate and reliable version of the nested interaction picture is the simplest, so- 

called "sequential," approach. The sequential method accepts the computational overhead 

described above, leading to computational times which may be several times longer than 

an equivalent Schrödinger-picture propagation in one dimension. The sequential nested 

interaction picture, however, does enable accurate computations using reduced grid sizes 

compared to propagation in the Schrödinger picture. This is demonstrated in Chapters V 

and VI. 
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IV.   Alternative Computational Implementations of the Interaction Picture 

Three approaches to the interaction picture were investigated in the course of this project 

that failed, either to yield reliably accurate results, or to promise any computational advan- 

tage over the Schrödinger picture. The sequential approach is the simplest, and is the equal 

of the Schrödinger split-operator method in stability and accuracy, but requires the same 

grid size and more computational time than the split-operator method. Tannor's so-called 

"Heisenberg" approach can reduce grid and computation-time requirements, but requires 

an analytic expression for the potential and is not accurate for many interaction poten- 

tials. A new approach was also developed and investigated, and named the "finite-basis 

approach." This approach proved to be computationally unstable. 

4-1    The Sequential Method 

The non-nested sequential approach was investigated early, not on the basis of any 

possibility of computational advantage, but simply to verify the claim of Section 3.5.2 that 

M0ller states can be computed by single interaction-picture propagations. The sequential 

process uses the Lanczos propagation scheme of Section 3.2 to diagonalize a finite-basis 

approximation of the interaction-picture Hamiltonian, 

H/(t) = uS(t)HiUo(t). (4.1) 

As noted in Section 3.5.3, the diagonalization process for this Hamiltonian requires the 

same grid needed for the Schrödinger picture. However, it is comparatively simple to 

implement, particularly to first order, and serves to show that accurate M0ller states do 

result from propagations of asymptotic states in the interaction picture. 

This is demonstrated by the computation of M0ller states of the square-well potential 

of Figure 4.1. The figure shows the positive-momentum reactant M0ller state (x\il>+) s, 

computed in the Schrödinger picture using a split-operator propagator, based on the pa- 

rameters set out in Table 4.1. Figure 4.2 shows the same M0ller state of the square well, 

also computed using the parameters stated in Table 4.1 in the interaction picture with a 

first-order Lanczos propagator and a four-vector Krylov basis. The reactant and product 
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Figure 4.1 The reactant M0ller state \I/+ (x), computed in the Schrödinger picture for 
the square-well potential represented by the heavy solid line. The dotted line 
represents the real part of the wavefunction; the thin solid line its modulus, 
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Figure 4.2 The reactant M0ller state \1/+ (x), computed in the interaction picture for 
the square-well potential represented by the heavy solid line. The dotted line 
represents the real part of the wavefunction; the thin solid line its modulus, 

states computed in the two pictures can be compared as to amplitude and phase, according 

to the following criteria. After Tannor et al.(49), the amplitude error is given by 

^ = |l-(a2 + 62)|, (4.2) 

and the phase error by 

e$ tan-1 I - (4.3) 
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Quantity Variable Value 
Coordinate grid spacing Ax .005 
Grid size N 4096 
Asymptotic time T 0.45 
Reduced mass V 1.0 
Time step size At 0.001 
Initial state position Xo 0.0 
Initial state momentum k0 11.3 
Initial Gaussian width parameter a 0.25 

Table 4.1     Parameters used to generate the M0ller states in Figures 4.1 and 4.2.   All 
quantities are in atomic units. 

where a and b are the real and imaginary parts of the overlap of the respective wavefunctions- 

i.e., {tpf \ipg) = a + ib. The pairs of Mfeller states illustrated have amplitude error €A = 

3.7 • 10~6 and phase error e$ = 4.2 ■ 10~3. 

In the Schrödinger picture, the process of computing the Möller states involves prop- 

agating the reactant state back to time -r and the product state forward to time +r. 

As illustrated in Figure 4.3, this drives the requirement for a grid larger than that which 

would be needed to support only the initial and M0ller states. 

In the interaction picture, in contrast, the intermediate states are identical to the 

initial states, since this propagation is done using a free-particle potential. The M0ller 

states evolve directly as single propagations from time t = ±r to t = 0. Were it not for 

the internal workings of the sequential method, the interaction picture would thus support 

the entire computation on a smaller grid. However, the sequential wavefunction \ip (t)} is 

computed directly as 

hM*)>/ = u0(i)hMi))s 

=   Uj(t)U(t,0)U0 (0)1^(0)^ 

=   Uo(t)U(t,0)|V(0))s 

=   U0(W(i))s- (4-4) 
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Figure 4.3     The intermediate state (x | e-iHo{--^ | *<„> s at time -r = -4.5 atomic units. 
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Thus at time ±r, the intermediate states [^ (T))J are in fact derived from the very states 

\ip (T))S depicted in Figure 4.3, and therefore require the same grid size as the Schrödinger 

picture. 

4.2    The "Heisenberg" Method 

Tannor's "Heisenberg" approach succeeds in bypassing the Schrödinger picture and 

trimming the computational grid requirements for M0ller states in the interaction pic- 

ture (49). Tannor named the method "Heisenberg" because of the similarity of the equa- 

tions of motion of its position and momentum operators to the Heisenberg picture's. It 

is not, however, a true Heisenberg picture; therefore here the name appears in quotation 

marks. The "Heisenberg" approach is based on manipulation of an analytic expression 

of the Hamiltonian, using a number of operator identities. The construction of the time- 

evolution operator in the method begins with a reformulated potential and Hamiltonian. 

4-2.1    The  "Heisenberg" Potential. Consider a full, iV-dimensional, channel 

Hamiltonian in Jacobi coordinates, 

H7s = E|f + ^(ä5), (4-5) 

where the operator R5 includes both internal and external coordinates. Let a generic 

operator HQ be defined as the sum of any portion of the kinetic-energy operator and some 

analytic portion, $ (Rs) = Ylj=i Xm=i ^jri^sji °fthe potential operator: 

3=1   ^ 

The equation of motion for an interaction-picture operator Oj (t) = e
t'H-ot/hQse-i'H.ot/h jg 

ihjOi   =   »Ä^HoW + iftOjfyHo 

=   [O/.HJ]. (4.7) 
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Therefore, the time evolution of a position operator RJm = eiH°'/fiRsme m°t/h is given 

by 

-jtR/m   =    r[H0,R/m] 

I 

h 

L   -D2 
J2 tJi + $ (R5), ^otßKsme-m0tß 
.7=1 2ß> 

LpiH0t/h 
h 

LjHot/h 
2h 

i 
2h 

X:^+$(R5),R5: 

L 

E 
p2 

 , RSn 
»3 

=-«H0t/ft 

iHot/h 

=     J_eiH0t/^ 
p2 
 , RSn 

2ft I Mm J 

=-iHot/fi 

-iHot/ß 

Mn 
Im- (4.8) 

The derivation of equation (4.8) uses the commutator relations 

|Pj>RmJ     — (PjPjRm ~ ttmPjPjjöjm 

= (PjnPm"TO — PmKmPm + *m"~m"m ~ *Lm"m"r, 

= (Pm [Prn^Rmj + [Pm! RmJ "m) 

— XZllx  mi (4.9) 

[$(Rj),Rm]=0, (4.10) 

and 

EA^B = £[A,,B] (4.11) 

4-7 



www.manaraa.com

The time, evolution of a momentum operator, P/m = eiH°*^Psme iHo*/fi, is 

dt   Im ^ TO P/m] 

Z 

Ä 

£   T>2 

V tSi + $ (R5) , e'H^PSme-iH^ 

=    lle
iHot/h[^(Rs),Psm}e-m^h 

N    M 

= yHot/h E E *i« [R^p^] e'inot/h 

j=l n=l 

M 

n=l 
M 

n=l 
M 

= ^iHoi/ftE^n(^)R^1^Hot/?l 
n=l 

_e**o'/ÄV*ro(Rms)e-aiot/ft. (4.12) 

If the constraint V$m (Rms) = 0 is imposed, then we have 

^P- = °- (4.13) 

Equation (4.13) indicates that each component P/m of the momentum operator P/ is 

constant in time, so that P/ (t) = P/ (0) = Ps Equation (4.8) can thus be integrated 

directly, to yield 

Hence, by induction, 

R/m (*)   =   P/n (0)+/'i 
JO   ßm 

Plmdt 

t 
PSm H P^m- 

R/m(*)=fPsm + -fPSm)      , 

(4.14) 

(4.15) 
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for any natural number n, and 

V (Rim) = V (Rsm + — PSm) (4-16) 

for any analytic potential function V (R). 

4.2.2    The "Heisenberg" Hamiltonian and Evolution Operator.      Using the reason- 

ing of section 4.2.1, if the coordinate operator is 

R,(t) = Rs + — P5, (4-17) 

then, after two applications of the operator identity 

eABe-A = B + [A, B] + ± [A, [A, B]] + 1 [A, [A, [A, B]]] + ..., (4.18) 

the coordinate operator in the PR-adapted nested interaction picture (Section 3.5.4), is 

R"    _    e-i(Rs)Vs/he-i{Ps)R.sßRiei(Ps)Rsßei(Rs)Ps/h 

_    e-i(Rs)Ps/tie-i(Ps)R-sß (RS + ^St\ ei(Ps)Rs/hei{Rs)Ps/h 

=    c-i<Rs)Ps/ft (R   + Ell + ^ll\ e<<Rs>Ps/1 
V       A*      /* / 

=    Rs + ^ + i^ + (R). (4.19) 
/i fi 

Therefore, the PR-adapted Hamiltonian for a one-dimensional analytic potential is 

H//    _    e-i{R)Ps/fie-i(P>Rs/fi H/ei(P>Rs/fiei(R)Ps/ft 

=   HJRS + ^ + (R) + ^). (4.20) 

The time-evolution operator is now approximated using the iterated Lanczos method. 

Krylov basis vectors are built according to equation (3.6), by repeated operation of the 

Hamiltonian H" on the wavepacket i\> (t). The computational savings of the "Heisenberg" 
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approach compared to a sequential approach vary depending on the chosen partition of H 

into Ho and Hi. 

4.2.3 A Reformulated "Heisenberg" Hamiltonian. The manipulations of Section 

4.2.1 can lead to simpler formulation of the evolution and Möller operators in certain cases. 

In constructing a particular interaction picture, the choice of the operator HjJ is free. 

However, that choice immediately determines the remaining portion of the Hamiltonian to 

be 

H?   =   H7 - H2 
JV     p2 

2/x 
=     E   ^L + V(Rs)-*(Ks) 

3=L+1    r3 

N      T>2 

=     E  if + V(ßs). (4-21) 
j=L+l    ^3 

The full interaction-picture Hamiltonian is then written, 

JJ7     _     giH0*/ftjj7e-iH0t/ft 

/    JV     p2 \ 
=   eiHo*/ft     y- ?Ji + v' (Rs)   e-mot'h 

(JV     p2   \ 
y^   l£j      e-iO0t/h + eiHotlKyi ttj e-tHot/ft 

=       V   — gäiot/ftpl^-iHot/ft + F/ (R7) 

j=L+l ^ 

JV        .. M / / \ 
=     y-   J_cfflot/ftp   e-flü,t/»c.-Hot/ftp   e-iHot/ft + Vv;   RSm + —PSm 

J=i+1 
JV        ., M 

9„   ~ JJ '    ^V'm\ R5m + '^_p5m 

j=L+lZfiJ m=l          ^                  ^ 

JV        , M 

JV M / , 

= E^V£^K+;rp 

j=L+l    PJ m=l V ^ - E,^^iK^p4 (422) 
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The first term of the expansion of the time-evolution operator is therefore 

U?(Mo)   =   exp{-^H](i')^} 
-iH](t0)(t-t0)/h (4.23) 

exp < 
-iAt 
~h~ 

N        1 M , . 

E Ö^% + E^ [Ksm(t0) + f-Ps. 
=L+l*fi3 m=l V ^m J=L+1 

This form of the operator is amenable to split-operator propagation for those potentials 

V for which an analytic expression is available. Exponential potentials such as Morse 

oscillators are particularly tractable using this approach. Let us now examine the results 

of certain choices of interaction picture. 

4.2.4    Examples of "Heisenberg" Interaction Pictures. 

4.2.4.I    The One-Dimensional Case.      In one dimension, the Hamiltonian is 

given by 

h?k2 

(4.24) 

Let 

Ho = Ha = 
fi2k2 

2m ' 
(4.25) 

Hi=V(r). (4.26) 

The M0ller operators are time-evolution operators, as shown in Section 3.5.2.  For 

small time intervals, the time-evolution operator is approximated by 

U?(Mo)   =   exp\j[KI (*')*'} 
}-iAt„f_    , h[t0 + (t-t0)/2],. -iAtTr . 

exp <; —r-V (i\s + ks (4.27) 
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This form is fast and simple to apply directly, but again requires an analytic expression 

for the potential V (x). 

4.2.4.2    Two-Dimensional Cases. Suppose we have a two-dimensional 

Hamiltonian in Jacobi coordinates, 

H^ + ^f^^- (4'28) 

As mentioned earlier, a number of different partitions of the Hamiltonian into the portions 

HJJ and H^ are available in systems with two or more degrees of freedom. 

• Consider the choice, 

H2 = T7 = ^ (4.29) 

h2k2 

H7=AL+V7(r7)Är)i (4.30) 

In this interaction picture, the M0ller operators are phase-shifted time evolutions. 

The short-time evolution operator is 

Uj(Mo)   =   exp{TjCH?(*')*'} 
«   exp/^[^-l^T+^(r7 + ökr7,R7 + ökÄy)  |,   (4.31) 

where 

9 = h[to + (t-t0)/2}^ (4 32) 

Mm 

This evolution operator can be applied in split-operator fashion, provided always 

that the interaction potential is available in analytic form. 
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• Suppose instead we choose, 

ff = T = £^ + ^k (4.33) 0 2m7        2/i7 

Hj=V7(r7,Är). (4-34) 

In this interaction picture, the short-time evolution operator is approximately 

U?(Mo)   =   exp{^£H7(i')^} 

«   expI^V^^s + ök^s^s + ök^s)}, (4-35) 

(where 0 is given once again by equation 4.32) which can be applied directly in the 

coordinate representation, given an analytic form of the potential. 
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The M0ller state, given by 

|V>+)j   =   l^+)s 

lim_Ut(t)U„(*)|^n)s 

=   flimU7(t)Ul(t)|U 
=    lim e-i^ß^HZtß ^   x 

.    t—>oo 

=   lim e-i*r0+ni)tßei(H2+vint)tß tyin) 
t—>oo 

«   lim e-
iH2'/2Vi2H? t/2he-aqt/2hei^t/2hei2v?ntt/2hea%t/2h |^^ 

t—>oo 

=    lime-aH?(i)'/2ftcavZ'«i(*)*/ia|^fB>/ 
t—»00 

=    lime-i2H?«*/fiei2V-/Wf/,l|^n)7 
t—»00 

r/At r/At 
J] e-iml(tn)At/H JJ ei2V]nti(tm)Atßlxl)in)i 

n=l m=l 

r/A<        < -%2M.    / fan, -V7   rs + —ks 
' V rn =   IlexP{— 

jf exp {^Vgt (R,S + ^Rrs) } \Anh, (4-36) 
r/At 

X 
m= 

(employing the Zassenhaus identity (3.2) involves two propagations in this case, since 

Ho ^ Ha. The final line of equation (4.36) is only of use for analytic forms of the potentials 

Vy and V?nt. It should also be noted that the allowable size of the time step At is halved 

in this case because the Hamiltonian is doubled in the propagation operator. 

A final interesting partition, choosing Ho as the full Hamiltonian, results in a true 

Heisenberg picture. In this special case of the interaction picture, state vectors are 

time independent: 

W)H   =   e*Ht/ßlV<(*))< 

=    etHt/»e-iIB/ft 1^, (o)> S 

=   hM0))s- (4-37) 
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Therefore, time-dependent propagation methods do not apply in the way discussed 

thus far. Instead, operators must be evaluated directly as functions of time, 

OH (*) = Jm'hOse-im/h. (4.38) 

The M0ller operators are only defined at t = 0, so they are the same as in the 

Schrödinger picture, 

\^±)H     =     \^±)s = Ü±s   An(out))s 

=     lim  eiiM//ie-iH2t/ft 
t—>^oo 

=     lim  e-'H7t/V
H°t/'i 

t->±oo 

Win{out) i „ 

-m^/h^nlT/h 

'Pin(out) I „ 

4>in(out))„- (4-39) 
H 

The problem of computing M0ller states is thus formally identical in the Schrödinger 

and Heisenberg pictures. The M0ller operator could be decomposed into its two 

evolution-operator components, and each operation performed in the Heisenberg pic- 

ture using a variant of the Lanczos technique, but this approach has no apparent 

advantage over a judiciously chosen interaction-picture propagation. 

4.2.5 Computational Problems of the "Heisenberg" Approach. First- and second- 

order Lanczos propagators were developed to demonstrate the "Heisenberg" interaction 

picture. The results were good for the exponential potential functions V (x) = De~ax 

already demonstrated by Tannor's group(49), but not at all reliable for realistic interaction 

potentials. The problem may lie in the fact that the effect of the potential is evaluated 

entirely in the Krylov subspace, using only a few sampling points instead of the many used 

when the potential is sampled at each grid point in coordinate or momentum space. In 

a one-dimensional PR-adapted nested "Heisenberg" interaction picture, for example, the 

Hamiltonian is evaluated as 

H» = v(x + ^ + <x> + M*y (4.40) 
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where the argument y (t) = x + ^ + (x) + ^- is diagonalized, leading to the potential 

being evaluated at the Ritz values y{ (t) = (qi |y (t) \qi) Figure 4.4 shows the dispersion of 

-0.025 

V(x) (a.u.) 
-0.015 -0.005 0.005 

OOQTK  £ 

Figure 4.4 The coordinate representation of the first seventeen Ritz values of a Gaus- 
sian wavepacket propagated in the "Heisenberg" interaction picture using a 
twenty-vector Krylov basis, with a Gaussian well potential. The progression 
of the Ritz values over time is represented with open circles. The Hamilto- 
nian is evaluated as the value of the potential V (y), represented by the solid 
curve, where only the Ritz values of y are used instead of the relatively much 
more densely distributed coordinate values x. 

the Ritz values for a localized scattering potential as propagation time progresses. Since 

the Hamiltonian is approximated by evaluating the potential function at the Ritz values, 

the Ritz values are plotted in conjunction with V {x). As time progresses, some Ritz values 

follow the dispersing wavepacket, while some remain in the region where the potential is 

significant. This opens the computation to loss of accuracy as the resulting basis may 

come to bear less and less of a relationship to either the Hamiltonian or the wavefunction. 
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This is a speculative explanation for the observed unreliability of the technique. Of several 

analytic potentials examined using this technique, only an exponential potential yielded 

accurate propagated wavepackets using the "Heisenberg" technique. 

4-3    The Finite-Basis Approach 

The third approach tried and abandoned was named the finite-basis approach. It had 

the advantage of speed, based on the virtual elimination of the requirement to perform 

FFTs by performing the entire computation in a Krylov subspace based on either the 

coordinate or momentum representation of the wavefunction, rather than both. However, 

this approach could not be made computationally stable. 

4.3.1 Derivation. In the iterative Lanczos method(44), the evolution operator 

U/ (t) is expressed in a finite basis of dimension M < iV, where N is the grid size(49-51). 

In matrix notation, 

(Xl\xß{t + At)) 

(xN \tl> (t + At)) 

(xi \qi) (xi |?M) 

(XN kl)     • • •      {XN \QM) 

{qi\XJ(t + At,t)\qi) 

(4.41) 

(qM\V(t + At,t)\qi)    •• 

(<7i \xi)           {QI\XN) 

(QM\XI)         (QM\XN) 

(qi\V(t + At,t)\qM) 

(qM\V(t + At,t)\qM) 

(XN \4> (<)) 
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The M basis vectors, \qn), in the Lanczos method, are derived from orthonormalized 

Krylov vectors 

\<j>n) = H? ty, (t)) = Uj (t) VnV0 (t) \4> (t)> ■ (4-42) 

This expression, if computed directly as in the sequential method, involves two free-particle 

type propagations over the full time t, not just the incremental time At: first by Uo (t) and 

then by Tj£ (t). This double propagation must be done M times for each time step in order 

to obtain all of the Krylov vectors. Furthermore, the same grid size is required as in the 

Schrödinger picture, since the full spreading effect of Uo (t) is ultimately incurred before 

being reversed by Uj (t). This direct approach for computing the Krylov vectors must 

therefore be avoided, if propagation in the interaction picture is to have any advantage 

over the Schrödinger picture. 

The need to propagate for the full time t and back again can be finessed by performing 

the propagations using Uo (±Ai) instead of Uo (±t). The interaction Hamiltonian at any 

time tj = tj-i + At is related to the previous time's Hamiltonian as 

H/fe)   =   UJ&OVUote) 
_     etHo(tJ--i+At)/ftye-iHo(tj-1+At)/ft 

_    em0At/h /giHotj-i/ftYg-tHo^-i/R^ e-m0At/h 

=   eiHoAt/ftH7 (tj-i) e-iHoAt/n. (4.43) 

The previous Hamiltonian, Hj (tj-i), has already been diagonalized in its own finite basis, 

and may be transformed to the full momentum representation by means of a non-square 

matrix Q, whose elements Qnm = (kn rfm) are computed as part of the Lanczos tri- 

diagonalization process. This enables Hj (tj) to be represented in turn in an M-dimensional 

subspace, and then applied to a wavepacket in the momentum representation. 

For each time step tj, the first Krylov vector is chosen to be 

^) = |^(ti_i)>, (4.44) 
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and is computed in its momentum representation, (k q(j.   To obtain each subsequent 

basis vector, qb\ it is necessary to calculate the vector 

(4.45) 

In the momentum representation, 

=     /dfc'(fc|eiH°A 

x J dk" {cf-l\k") j dk'" (k" 

M 
■J'-l 

n'=l n"=l 

g-iHoAt/ftl^/W^/// #-i >•      (4-46) 

The linearly independent Krylov basis vectors \4?n) are orthonormalized to obtain the 

basis vectors qi). Thus, the basis vectors are calculated using propagations over just the 

durations ±At, enabling a reduction in grid size and eliminating FFTs entirely from the 

propagation process. 

Further examination of the process for calculating subsequent basis vectors reveals 

another benefit of pairing the interaction picture with the Lanczos propagation method. 

The vector \qh,\ is generated according to equation (3.9), 

\qn)    =   ^- {H7 (^) |^_x) - c„_! |^_x) - /3„_! |^-2)} 

=    -£-{ -0 H/ (tj) [HJ (tj) qi_2) - an-2 <£_2) ~ ßn-2 «£-3) 
Pn LPn-1 L ' ' 'J 

-«n^i|fli-i)-/?«-i|flJ-2)} (4-47) 

H, (tj) H7 (tj) \<£_2) - an_2H7 (tj) \<fn_2) - /?„_2H, (tj) q{_z) 
ßnßn- 

Oin-l 

ßn 
ßn-l    J      \ 
ßn     *>-*/- 
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The vectors pin), for 1 < m < M, are given by 

\p>m)   =   H,(t;)|<&> 

=    Hj (tj) -£- {HJ (tj)  (t-l) ~ «™-l \lL-l) ~ ßm-1 |^-2)} 
rm 

=     -!- JH/ (tj) |p4> - «m-l  p£i-l) " ßn-1 |?4-2)} • (4.48) 

Then for 1 < n < M, equation (4.47) becomes 

l«*>    = 
ßnßn-l 

H/ (tj)  pi_2) ~ an-2  pi-2) ~ ßn-2  PL-3 

'   ßn 
«i-i ßn 

c 
=     -g-{ P""1) ~ 0n_1 '9n_1 ^7 ~~ /?"_1 '?n~2 ^7J  ' 

(4.49) 

where the values of pJ
n_2) and Pn^s) are known from previous calculations.  Only one 

new vector, H/ (*_,-) p£_2), is computed for the first time. The sum 

PLI) = T- {H/ (*i) Pta) - «n-2 k_2) - ßn-2 \?U)} (4-50) 

is saved for future use. 

It is now clear that the operation of the Hamiltonian is going to be evaluated only in 

expressions of the form of the first term of equation (4.50). Such vectors can be evaluated 

as outlined above, by recourse to the previously diagonalized operator H/ (tj-i): 

H/ (tj) p>_2)   =   -^— JH, (*,-) H7 (tj) K_3) - a„_3H7 (tj) |p>B_3) 
' Pn-2   L ' 

-ßn-3Rl(tj)\li-i)} 
|eiHoAt/ftH/ Q.^ e-iH0At/fteiHoAt/fiH/ ^._^ e-iH0At/h |^ 

- an_3e
iHoAt/fiH7 (tj^) e-™°^h pi_s) 

- ß^^^Ü! (tj.,) e-m°M?h p>n_4)\ (4.51) 

ßn-'. 

pn-4)} 

=   J_e«oAt/ft |H/ (t^) |4_3) - an_3 |4_3) -/3B_s |4-4)} 
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The terms sin) in equation (4.51) represent the vectors 

e-iH0At/h «?'),, (4-52) 

and for 1 < m < M, 

|4> = H7fe-i)e-iHoAi/ftK>, (4-53) 

which turn out to be a more convenient form in which to store the information contained in 

the vectors pk), taking advantage of the cancellation of evolution operators which occurs 

in repeated operations of H/ (tj-i). The operations contained in the braces in equation 

(4.51) are all performed in the Krylov subspace of the time t = tj-i, and the result 

transformed to the momentum representation and propagated by —At. The propagated 

vector is then added to the remaining terms of equations (4.49) and (4.50) in momentum 

space. Only M + l FFTs are required over the entire propagation to compute the first M 

basis vectors if Ho and Hi are respectively functions of position and momentum alone, as 

opposed to 2M FFTs per time step required by the Lanczos method in the Schrödinger 

picture. 

4.3.2 Implementation Problems and Possible Solutions. The finite-basis algo- 

rithm was implemented in a one-dimensional propagator, using a first-order truncation of 

the time-evolution operator and no re-orthogonalization of the basis vectors. In this crude 

form, the method falls victim to two idiosyncracies of the iterative Lanczos approach. 

First, equation 4.46 implicitly assumes that the qh\ span the full iV-dimensional 

space. This approximation that \tp (tj+i)) can be expressed as a linear combination of the 

qb \ is adequate for a single time step, but its error, compounded over several time steps, 

is sufficient to cause the pure finite-basis method described above to become unstable for 

long-time propagations of the type required for reactive scattering calculations. The loss of 

accuracy begins immediately with the highest-order Krylov basis vectors, so increasing the 

basis size delays the onset of inaccuracy for the wavefunction itself, but does not prevent 

it permanently.   Once the degradation progresses far enough, too few appropriate basis 

4-21 



www.manaraa.com

vectors remain to represent the wavefunction accurately.   Figure 4.5 shows the onset of 

degradation in wavefunctions constructed in Krylov bases of various order. 

■100 ■50 0 

Time { atomic units 

100 

Figure 4.5 Increasing error with propagation time for Gaussian wavepackets on a linear 
potential, using a first-order finite-basis nested interaction picture propagator 
with various Krylov basis dimensions M. The reference wavefunction ^D is 
computed using the sequential non-nested interaction picture described in 

Section 4.1. 

Second, the Lanczos tri-diagonalization algorithm suffers from a tendency for the 

orthogonality of the basis vectors to degrade with repeated iterations. This results from 

a well-known numerical problem of Gram-Schmidt orthogonalization, which can be dealt 

with when necessary by periodically re-orthogonalizing all or some of the basis vectors(72- 

75). 

Three possibilities for stabilizing the finite-basis algorithm were considered: 

• Periodic "resetting" of the approximation by performing a direct-propagation step 

using FFTs on the momentum grid. This lengthens the lifetime of the propagation, 

but ultimately the propagation still fails catastrophically (Figure 4.6). Degradation 
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Figure 4.6 Degradation in accuracy of propagated wavepacket with time. Propagations 
were done on a linear ramp potential, using the finite-basis algorithm, "re- 
set" periodically by performing a time step using the sequential non-nested 
interaction picture. The reference wavefunction \Pre/ is computed entirely in 
the sequential non-nested interaction picture. 
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is not entirely eliminated even when every other time step is performed using the 

inefficient non-nested sequential method, as reflected in the gradual destruction of 

the state vector illustrated in Figure 4.7. 

2.8x10 

?-   2.6x10" 
? 

i.  2.4x10" 

2.2x10 

2.0x10 
70 75 80 85 

Time 
90 95 100 

Figure 4.7 Even alternating every other iteration between nested finite-basis and non- 
nested sequential interaction pictures results in a gradual but continuous 
degradation in accuracy of the propagated wavepacket as compared to *re/, 
obtained entirely by using the sequential non-nested propagator. 

• Re-orthogonalization of the basis vectors to allow larger, more stable basis sets. 

This was attempted, and failed to have any effect on the degradation of accuracy in 

propagated wavepackets. 

• Implementation of higher-order Magnus representations of the time evolution opera- 

tor to improve the accuracy of transitions from one time step's basis to the next, and 

allow longer propagations with less error. This would only postpone the degradation 

by allowing longer propagations with the same number of time steps, so second-order 

Lanczos propagation was never applied to the finite-basis approach. 
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V.   Software Implementation and Validation 

5.1    Code Implementation 

The core activity of this project, described in Chapter VI, involves computing S- 

matrix elements by generating Möller states in the interaction picture, then evaluating 

the Fourier transform of the time-dependent correlation function (2.24), computed in the 

Schrödinger picture with absorbing boundary conditions. The Möller states are generated 

using ä Lanczos propagator based on the second-order Magnus expansion of the time- 

evolution operator to propagate product and reactant wavepackets from t — ±r to t = 0. 

The Tannor sequential PR-adapted nested interaction picture, introduced in Section 3.5.4, 

is used. For comparison, Möller states are also computed in the Schrödinger picture, using 

the split-operator method of Section 3.1. The Schrödinger spilt-operator method is faster 

and more commonly used than the Lanczos method in the Schrödinger picture, and thus 

presents the primary benchmark for comparison of computational effort required to obtain 

similar results in the interaction picture. 

All code for calculating the Möller states is written in C++. Several legacy subrou- 

tines in standard C are employed, including Basic Linear Algebra Subprograms (BLAS) 

and CLAPACK linear-algebra subroutines from Netlib, and a matrix diagonalizer and FFT 

from Numerical Recipes in C (76-79). 

The Möller states are passed to a modified version of a Fortran program, developed 

by R. S. Calfas to generate correlation functions, using split-operator propagation with 

absorbing boundary conditions in the Schrödinger picture(23,80). S-matrix elements are 

then derived from the correlation functions using another C++ application. The Delta 

C++ compiler and Silicon Graphics Fortran compilers were used on MIPS 3000 and higher- 

performance Silicon Graphics workstations. 

5.1.1 Initial Conditions. The interaction-picture Möller states are computed in 

the PR-adapted interaction picture(49) defined by 

Ho = Ha = T ~ |k (5.1) 
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The channel-packet method begins with four initial states, 

*%U^)r* THor/fc 
Ü. in/out tf NP 

in/ out I a ' (5.2) 

made up of one reactant (in) and one product (out) state in each of the two channels (to the 

left (A) and right (p) of the interaction region of the potential. These initial wavepackets 

are constructed analytically in the Schrödinger picture as Gaussians 

x ibX/p 
^in/out [2na2]   4 exp 

(re - XQY 

4a2 + ikox (5.3) 

(the coordinate representation of Equation 2.5) centered near the interaction region at 

tf 
X/P    (±T\' 
in/out V       11 , t = 0, but are the same as the corresponding interaction-picture states (re 

at time +r for products and —r for reactants. The corresponding PR-adapted intermediate 

states, 

IMP Oixok0-ik0x,i,^/p 
^iout (**)), ~ ^e-^ZU (^±r)/ ' (5.4) 

are then calculated, using the initial conditions (re) = rro and (k) = ko- Subsequently, 

new values of (re) and (k) must be computed after each time step and used to update the 

evolving wavepacket. At t = to, the end of the channel-packet method's first propagation, 

the Möller states are converted from the nested interaction picture to the Schrödinger 

picture, as 

(x\^±)s = (x e-i<k)xei<x)k (5.5) 

5.1.2    Computation of M0ller States.       The short-time evolution operator is ap1 

proximated by a second-order Magnus expansion, 

Ui(tk+1,tk)   «   exp J4 r^^'-i fk+1 dt' I'" [H/(t'),H7(t")]dt"l 

«   exp |-iH7 (tk + -$f) At - ^ [H7 (tk+l), H/ (tk)] (At)2}       (5.6) 
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where midpoint quadrature is employed to approximate the first-order term, and trape- 

zoidal integration for the second-order term. The geometry of the derivation of the second- 

order term, 

B (tfc+i,tfc) = 2^ r+1 dt' f dt" [H (*') ,H (<")] , (5.7) 

is illustrated in Figure 5.1. Two-dimensional trapezoidal quadrature operates in a super- 

z(x) = C(1-x/8) 

A(x) = 72Z(x)y(x) 

Figure 5.1     Calculation of the two-dimensional trapezoidal integral. 

space which adds the time dimensions if and t" to the Hilbert space containing the com- 

mutator. The hypersurface of integration, z (t',t") = [H (t') ,H (£")], is approximated by a 

plane. The integral is the volume between the (*',£") plane and the triangle containing the 

points it' = t" = tk,z = 0), (if = t" = tk+uz = 0), and (f = tk+1,t" = tk,z= [H(tk+1), 

H (tk)} = C). The integral is easily performed in the coordinates x = t" — tk, y = tk+i — t', 

5-3 



www.manaraa.com

where 6 = At = tk — ifc-i- Thus, 

B(£fc+i,£fc) 

c 
Ah2 

I2h2 

(Atf 
I2h2 

x' ,31 

6x-x +- 
Jo 

[H(<fc+i),H(tfc)] (5.8) 

The result of applying the evolution operator to a PR-adapted wavepacket (x |i/>-'). / 

at time t = tj is 

fH-1 (x) = (x 3*<x)jke-*(k)jx 

^>"- 
(5.9) 

a representation of the wavepacket at time t = tj+i, but in the interaction picture defined 

by the displacement-boost operator e^
x^fce~^k^x, corresponding to time t — tj. The 

wavepacket is brought into the correct interaction picture by first updating the expectation 

values, 

H+i = (x)i + <^+1|xl^'+1>' (5.10) 

and 

Wi+i = Wi + <e*+1 |k |e*+1>, (5.11) 
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then computing, 

(x\^+iy; = (x ^<x>i+ike-
i<k>j+ix v«)[ 

= ei<eixie> feei(x>J.fce-i(cikie> xe-i(x)äk^+i ^ 

= ■   ei«|x|{> fcc-t«|k|0 xjWjk^imZ) (x>Je-i(x>Jfc^j+l (x) 

=    e<«|x|Ö fce-*«|k|e> xc-<«WO <x)^i+l (x) _ (5.12) 

The derivation of equation (5.12) uses the lemma, 

gdkgbx _ eaxg6kem6 (5.13) 

which is a corollary of the Zassenhaus formula (3.2), since 

Oox+6k _ eaxebke-i[ax,ftk] _ g6k+ax _ e6keaXgi[ax,6k]_ (5.14) e 

5.2    Validation with Square Potentials 

To confirm the capability of the interaction-picture approach to compute accurate 

Möller states and S-matrix elements, the process can be tested using an asymmetric square- 

well potential, with one asymptotic potential energy higher than the other (Figure 5.2). 

This potential is chosen because its transmission and reflection coefficients can be calcu- 

lated analytically, and it exercises the capability of the channel-packet method to deal with 

disparate asymptotic energy levels. Square potentials, however, cannot be represented with 

complete accuracy on a discrete grid. No finite grid can support the true vertical slopes 

that characterize such a potential; however, a successful method will be able to demonstrate 

convergence toward the analytic solution as the potential is more accurately approximated. 

5.2.1 Sources of Numerical Error. All time-dependent propagation techniques 

are prone to error resulting from the discretization of continuous events. Position and 

momentum are considered as finite sets of non-contiguous points, usually separated by 
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Figure 5.2 The asymmetric square-well potential used to validate the propagators. The 
well's discontinuities are at ±1 atomic unit, the well bottom is at -100 atomic 
units of energy, and the left and right asymptotes are at 0 and 50 atomic units. 
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constant spacings Ax and Afc to accommodate the FFT. Time also is divided into discrete 

intervals At. Decreasing the size of any of these intervals increases the accuracy of the 

numerical approximation, while increasing the numerical effort required. Discontinuous 

potentials such as the square well pose special numerical problems of their own. When 

expressed on a discrete coordinate grid, what should be square becomes trapezoidal, as the 

infinitesimal distance across the discontinuity is stretched out to a finite Ax. This effect 

is illustrated in Figure 5.3. 

-2 o 

x (a.u.) 

60   - 

40   " 

Ax (a.u.) 
n moi:; ] 

     n r\oc\r\ I 
20   -     0.0500 

    0.1000 
( 

 0.2000 

3 
«j, 

> 

-20                                 H 
\i 

-40  "                             \>« 
■ «i 

-60                                   \j 

S 
-80  "                                 I 

-100  - 
/ :!i 

Figure 5.3     The asymmetric square well potential, to successively better approximations 
resulting from finer grid spacings. 

5.2.2   Analytic Calculation of Transmission and Reflection Coefficients. The 

analytic calculation of the probabilities of transmission and reflection is a straightforward 

but interesting exercise based on continuity of wavefunctions and their derivatives across 
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the discontinuities. Bohm's lucid treatment of the simple square well is easily adapted to 

accommodate one asymptote of the potential at nonzero energy(81). For a square well 

with left asymptote at energy E = 0, right asymptote at E = V\, and well of width 2a at 

potential — VQ, the transmission coefficient from left to right is 

Ti(E) = -^ (A2 + B2 + 2AB cos (4M) 
16 

-l h (5.15) 

where 

-'-l)R (5.16) 

'-"-öRr (5.17) 

fci = 
V^E 

(5.18) 

h = y/2n{E + VQ) (5.19) 

and 

h = ^(E-Vi) 
(5.20) 

The probability of reflection for a wavepacket traveling from left to right is of course, 

Äi = l-Ti. (5.21) 

The analytic transmission and reflection coefficients for the square well of Figure 5.2 are 

shown in Figures 5.4 and 5.5. 
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Figure 5.4     Transmission coefficient (from left to right) for the asymmetric square well. 
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Figure 5.5     Reflection coefficient for the asymmetric square well. 
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5.2.3 Numerical Approximations of S-Matrix Elements. The square and trape- 

zoidal potentials dealt with in this chapter are formed along the lines of Figure 5.3, with 

anchors at the leftmost points of the well and right asymptote. Square potentials con- 

structed in this manner approximate the desired width 2a of the discontinuous section to 

the best ability of the computational grid. The alternative of anchoring the potentials at 

the two ends of the well bottom would lead to an approximation to a true square potential 

of width 2a - Ax, with a different corresponding analytic transmission function for each 

grid spacing. The choice of this configuration would lead to unnecessary error in calcula- 

tions at larger grid spacings Ax, as the well widths diverged from the reference width. This 

type of error is visible in a plot of transmission functions (Figure 5.6), where the period 

of oscillation of the resonances in the transmission function can be seen to vary with the 

grid spacing, corresponding to changing well widths (80). By contrast, a similar series of 

calculations made with asymmetric potentials in the style of Figure 5.3 shows the period 

of oscillation remaining constant as the propagation time step is varied (Figure 5.7). 

Aside from the unavoidable error incumbent in the discretization of a discontinuous 

potential, some error in wavepacket calculations is controlled by the selection of the grid 

spacing Ax and the time step At, based on their conjugate relationships with momentum 

and energy quantities, respectively(7). Let the maximum available energy in the system 

be called 

-Emax = Eint + Tmax + V^axj (5.22) 

where Eint is internal energy (not present in these one-dimensional cases), Tmax = h2kliax/2fi 

is the maximum translational energy represented on the grid, and Vmax the maximum po- 

tential energy. The maximum momentum, kmax = n/Ax, is fixed via the FFT by its 

conjugate relationship with the coordinate grid. Therefore a coordinate spacing Axmax ex- 

ists, beyond which the momentum grid will not support the evolving wavepackets needed 

for the channel-packet calculations. With regard to the time step At, similar conditions 

exist with regard to Emax. Specifically, the conjugate relationship between energy and time 

requires that At < h/Emax. 
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Figure 5.6 Convergence behavior at decreasing grid spacings Ax for the transmission 
functions of a family of symmetric square wells whose width depends on the 
grid spacing(80). 
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Figure 5.7     Transmission functions of some asymmetric square wells resembling Figure 
5.3, made by the channel-packet method in the Schrödinger picture. 
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Variable Value Description 
Xi -1 Lowest coordinate in well 
X2 1 Lowest coordinate in right asymptotic channel 

-V0 -50 Potential energy in well 
V! 0 Potential energy of left asymptotic channel 
v2 100 Potential energy of right asymptotic channel 

Table 5.1     Potential parameters held constant for all transmission-function calculations 
in this chapter. All quantities are in atomic units. 

The potentials used in this chapter all share the parametric values given in Table 

5.1. Grids are always chosen such that the anchor points at the leftmost ends of the well 

and the right asymptote both reside on the grid. 

A baseline is needed to compare against the results of interaction-picture calculations 

for which no analytic solutions exist. This role is filled by a split-operator propagator. The 

split-operator method has become a standard propagation technique in the Schrödinger pic- 

ture because it is very stable and delivers accurate results comparatively quickly(34). Three 

series of calculations were run in the Schrödinger picture for comparison to interaction- 

picture results.  All three were transmission functions for various approximations to the 

asymmetric square potential of Figure 5.2.  The first set fixes the coordinate spacing at 

Ax = 0.0025, and demonstrates the convergence of the transmission function toward the 

analytic version with decreasing computational time step At. The second set of calcula- 

tions uses a fixed time step At = 1.0 • 10~5 atomic units, and demonstrates convergence 

as the coordinate spacing Arc is decreased.  It is recognized that changes in accuracy in 

this series are related to both the decrease in the grid spacing and the improvement in the 

accuracy of the potential itself as finer grid spacing allows closer approach to truly vertical 

well walls. The third set of calculations explores this source of error in two ways. First, 

both At and Ax are fixed at 1.0 • 10~5 atomic units and 0.01 atomic units respectively, 

and potentials with various degrees of slope in the sides of the well instead of the best 

possible square-well approximation are tested.   Second, a trapezoidal potential is tested 

with a fixed distance W = 0.08 atomic units between the endpoints of the well bottom 

and the beginning points of the asymptotes, using At = 1.0 • 10~5 atomic units, on grids 

of various spacings Aa; that represent the potential identically except for the number of 
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Variable Value Description 

2-rriax -10.24 Lowest value on coordinate grid for Möller states 
a 0.25 Width parameter for initial Gaussians V'm/out {x) 

XQ 0 Position parameter for 4>in/out (x) 

k0 12 Momentum parameter for V'm/out (x) 

M 1 Mass parameter for ?/m/out (x) 
r ±0.45 Asymptotic time   v 

Table 5.2     Grid and wavepacket parameters held constant for all transmission-function 
calculations in this chapter. All quantities are in atomic units. 

points sampled. This series isolates the source of degradation in accuracy with increased 

grid spacing to only the grid itself, holding the potential constant. The convergence of 

the transmission function for this series is measured relative to the calculation with the 

smallest Ax. To the greatest degree possible, the same parameters were used across all 

correlation-function calculations, in order to isolate the variation in the results to the por- 

tion of the S-matrix calculation that uses the interaction picture; namely, the derivation 

of the M0ller states. 

The parameters listed in Table 5.2 are common to all the calculations of transmission 

function, in both the Schrödinger and interaction pictures. The grid parameter JV, the total 

number of grid points, is varied in tandem with the grid spacing Ax to hold the parameter 

Zmax = NAx constant for all calculations. This ensures that sufficient space will exist on 

the coordinate grid for the intermediate states i/'j„/£mt (X,T). 

All calculations use a modified version of Calfas' code for calculation of the correlation 

function, with the parameters given in Table 5.3 common to all(80). The code was modified 

for this project to support asymmetric potentials and to run on larger grids. The grid 

spacing AXQ for the correlation function was always the same as that for the M0ller 

states, and the number of grid points Nc for the correlation function was always twice the 

number used to calculate the M0ller states. The grid for the correlation function can be 

this small because the code uses absorbing boundary conditions of the form, 

V (x) = < 
±%Ae{-x-xrflB     \x\ > xb 

0 elsewhere 
(5.23) 
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Variable 
-x raaxc 

A 

Aic 

T\ 

T2 

Value 
-20.48 

1.0 • 10"4 

1.0 • 10"5 

-0.5 
1.0 

Description 
Lowest value on coordinate grid for correlation function 
Absorbing boundary condition multiplier (Equation 5.23) 
Time step for correlation function 
Negative asymptotic time 
Positive asymptotic time  

Table 5.3     Grid and wavepacket parameters held constant for all correlation-function 
calculations in this chapter. All quantities are in atomic units. 

In this chapter, all calculations of the correlation function used the value A = 1.0 • 10~ 

given in Table 5.3, along with values of B chosen to make \V (xmaxc)| = 6. Such boundary 

conditions were found for each grid by trial and error to prevent both reflection from and 

transmission across the grid boundary by wavepackets to any detectable degree. The value 

of xi, varies with the grid size.- 

The calculation of the transmission function from the correlation function can only 

be valid over a certain range of energies. It can be seen from equation 2.28 that this 

method can be numerically stable only over the range of energies where the wavefunction 

product rf_ (±Ay) V+ (±ki) is numerically appreciable. The energy spectra r/± (E) of the 

wavepackets tpin and ipmt used in this chapter's calculations are shown with their product 

in Figure 5.8. Error in the transmission function is measured as the average, 

eCPM       ranalytic ,     n    I fCPM _ fO 
1 «—* \Ji Ji 

= -£■ n^ f. ■analytic 
(5.24) 

where the channel-packet result ffPM is compared to the analytic function only at those 

contiguous energy values where the divisor rfl (Ei) r)'+ (Et) > 0.01. For the wavepackets 

used here, this energy range in atomic units is 67 < E < 157. 

5.2.3.1    Schrödinger-Picture Calculations. 

Asymmetric Square Wells With Various Time Steps.       For the scenario 

of this calculation, with a fixed Ax = 0.0025 atomic units, the predicted maximum safe 
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Figure 5.8 The product r/* (Ein) rf+ {Ewt) and its components, the energy spectra of 
the reactant and product wavepackets. Since this product is the divisor of 
the formula for the S matrix, its spectrum bounds the range of energies over 
which the S matrix may be calculated by the channel-packet method using a 
given pair of initial states V'in/out- 

5-17 



www.manaraa.com

time step is 

AU 
■^max 

h 

■*max ~r Vmax 

h 
h^max/2ß + Vmax 

h 

hW/2ß(Ax)2 + Vmax 

1 

7T2/2 (0.0025)2 +100 
^ 1 •10~6 (5.25) 

in atomic units. This turns out to be unnecessarily conservative, based as it is on the 

maximum possible total energy in the model, rather than the maximum energy actually 

seen in the collision. As seen in Figures 5.9 and 5.10, accurate results are achieved over 

the selected energy range at much larger time steps. The momentum grid in a square-well 

model must necessarily have excess capacity, since the coordinate spacing Ax = 7r/fcmax 

must be made small in order to approximate the potential with accuracy. 

Figure 5.10 shows an order of convergence of approximately 1.5 at the right end of 

the curve, and ceases to converge for time steps smaller than 0.0001 atomic units. The 

failure to continue to converge results from the inaccuracy in the potential inherent to the 

discrete representation with Ax = 0.0025 atomic units. 

Asymmetric Square Wells With Various Coordinate Steps. A quadratic 

order of convergence is evident when the time step is held constant and the grid spacing is 

varied, as shown in Figure 5.11. In this case the convergence is limited by the finite time 

step At = 1.0 • 10~5 used throughout the calculations. 

Asymmetric Trapezoidal Wells With Various Coordinate Steps. The 

previous result (Figure 5.11) includes two simultaneously varying quantities that contribute 

to error in the transmission function; one being the coordinate spacing itself, the other the 

variation of the potential that is incumbent in seeking the best approximation to the 
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Figure 5.9 Transmission coefficient of the asymmetric square well for several choices of 
propagation time step At for the Möller states only. The correlation-function 
step of the channel-packet process uses Ate = 1-0 • IGT5 atomic units in all 
cases. 
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Figure 5.10 The error in the transmission coefficients of the asymmetric square well 
transmission function as computed in the Schrödinger picture. Error is 
computed using equation (5.24), with the analytic square-well potential as 
the reference. 
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Figure 5.11 Convergence of the transmission coefficient for the asymmetric square well 
as the coordinate spacing Ax is decreased in the Schrödinger picture. The 
accuracy of the discrete representation of the square potential is also im- 
proving with decreasing Ax. Error is computed using equation (5.24), with 
the analytic square-well potential as the reference. 
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Grid Spacing of Extra Points in 
"Square" Well Trapezoidal Well Sides Equivalent Ax 

0.01 0 0.01 
0.02 1 0.02 
0.04 3 0.04 
0.08 7 0.08 
0.16 15 0.16 

Table 5.4 Summary of the potentials compared in Figures 5.12 and 5.17. The first and 
third columns are expressed in atomic units of distance. "Equivalent Ax" is 
seen to be idendical to the grid spacing of the "square" well that is being 
compared to the trapezoidal well on the grid with spacing Ax = 0.01 atomic 
units. The trapezoidal wells on the finer grid are formed by adding enough 
extra points to the well sides (between the outer points of the well bottom and 
the inner points of the asymptotes) that the slopes of the well sides become 
identical to the corresponding slopes of the "square" potentials on the coarser 
grids. 

square potential that is possible in each grid. These factors can be examined one at a 

time by mimicking the trapezoidal configuration of the wells constructed on the more 

coarsely-spaced grids on grids with smaller Ax. Figure 5.12 holds the first factor constant, 

comparing the convergence of trapezoidal wells, all with At = 1.0 • 10~5 and Ax = 0.01 

atomic units, with various numbers of extra points added to the well walls to make the 

potentials the same shape as the "square" potentials previously constructed on grids with 

larger values of Ax. For example, a well with one extra point between the inner ends of 

the asymptotes and the outer ends of the well is compared to one with no extra points 

(a "square" well) on a grid with Ax = 0.02 atomic units. Table 5.4 enumerates the 

comparisons depicted in Figure 5.12. The figure shows that the order of convergence to 

the analytic square-well solution remains quadratic when the same potentials are modeled 

on more finely spaced grids, with the finer grids showing somewhat improved accuracy in 

the transmission function relative to those computed on the same potential using a coarser 

grid. 

Figure 5.13 addresses the second factor. Here a single trapezoidal shape is maintained 

with distance W = 0.08 atomic units between the rightmost point of the well bottom and 

the leftmost point of the right asymptote, while the coordinate spacing is varied over 

the range 0.0025 < Ax < 0.08 atomic units.  Quadratic convergence of the transmission 
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Figure 5.12 Error in transmission coefficients for asymmetric trapezoidal well potentals 
(dotted curve), compared to those for the corresponding asymmtetric square 
wells on coarser numerical grids (solid curve). The trapezoidal wells have no 
grid points within the well walls for Ax = 0.01, one for Ax = 0.02, three for 
Ax = 0.04, and so on, as enumerated in Table 5.4. The entire channel-packet 
calculation is done in the Schrödinger picture. Error is computed using 
equation (5.24), with the analytic square-well potential as the reference. 
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Figure 5.13 Convergence in the Schrödinger picture of the transmission function for a 
trapezoidal well of fixed shape as coordinate spacing Ax is varied. The refer- 
ence transmission function uses Ax = 0.0025 atomic units. All calculations 
use At = 1.0 • 10-5 atomic units. 

function is seen, not, of course, toward the analytic square-well transmission function, 

but toward the most accurate calculation of the transmission function for this particular 

trapezoidal well; namely, the calculation performed using the smallest grid spacing. 

5.2.3.2   Interaction-Picture Calculations. 

Asymmetric Square Wells With Various Time Steps. For larger time 

steps in the M0ller-state calculation, the interaction-picture approach shows linear conver- 

gence behavior, at a higher level of error than in the Schrödinger picture for a given time 

step At. This is illustrated in Figure 5.14. The interaction-picture calculation of the M0ller 
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Figure 5.14 Convergence with decreasing time step At of transmission functions com- 
puted in the Schrödinger picture using M0ller states produced in the in- 
teraction picture, compared to transmission functions produced entirely in 
the Schrödinger picture. Error is computed using equation (5.24), with the 
analytic square-well potential as the reference. 

states, while still limited by the common use of the fixed time step Ate = 1-0 • 10-5 in the 

Schrödinger picture for the calculation of the correlation function, appears ultimately to 

converge to a result of equal accuracy to that achieved by calculation of the M0ller states 

in the Schrödinger picture at the shortest time steps. This is reasonably seen as an effect 

of the time dependence of the interaction-picture Hamiltonian. Discontinuous or rapidly 

varying potentials such as square and highly sloped trapezoidal wells and barriers would 

be expected to cause the interaction-picture Hamiltonian to vary rapidly in time while the 

wavepackets are in the interaction region of the potential. 
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Asymmetrie Square Wells With Various Coordinate Steps. The con- 

vergence behavior of the transmission function based on interaction-picture M0ller states as 

coordinate spacing Ax decreases is consistent with this interpretation. At the chosen small 

value At = Atc = 1.0 • 10~5 atomic units, Figure 5.14 predicts equal accuracy between 

the Schrödinger and interaction pictures. Figure 5.15 confirms this prediction, with an 

indication at the largest grid spacing, where its Hamiltonian is the least time-dependent, 

of somewhat more accurate results than the Schrödinger picture at the common time step. 

A similar experiment using the common time step At = Ate = 1-0 • 10~4 makes the point 

even more nicely, as shown in Figure 5.16. Use of the longer time step exposes the inter- 

action picture to increased error relative to the Schrödinger picture for the more steeply 

sloped potentials, while remaining of comparable accuracy for the less steeply sloped po- 

tentials. Constraints on the coordinate grid required to keep the potential's anchor points 

at x = ±1 atomic unit on the grid restrict the available number of large values of Ax be- 

low the momentum-grid limit. Both the interaction-picture and the Schrödinger methods 

appear to converge toward the analytic result approximately quadratically in this scenario. 

Asymmetric Trapezoidal Wells With Various Coordinate Steps. The 

interaction picture does not show the same benefit from decreasing the coordinate spacing 

as the Schrödinger picture in the test used here, where the time step is held constant and 

the coordinate spacing is held constant at Ax = 0.01 atomic units, while the slope of the 

well sides is varied. The interaction picture remains similar in accuracy to the Schrödinger 

picture at this time-step size, as shown in Figure 5.17. 

Figure 5.18 demonstrates that the interaction picture converges similarly toward the 

benchmark Schrödinger-picture calculation of the transmission function for the fixed-shape 

trapezoidal well as grid spacing decreases. Not surprisingly, the approach of the interaction- 

picture version to the benchmark ceases at higher grid resolutions as the interaction picture 

converges to its own best version of the transmission function. 
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Figure 5.15 Error with varying grid spacing Ax of transmission functions for the asym- 
metric square well with M0ller states computed in the interaction picture, 
compared to results obtained entirely in the Schrödinger picture. These cal- 
culations use At = Ate = 1-0 • 10~5 atomic units. Error is computed using 
equation (5.24), with the analytic square-well potential as the reference. 
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Figure 5.16 Error with varying grid spacing Ax of transmission functions for the asym- 
metric square well with M0ller states computed in the interaction picture, 
compared to results obtained entirely in the Schrödinger picture. These cal- 
culations use At = Ate = 1-0 • 10~4 atomic units. Error is computed using 
equation (5.24), with the analytic square-well potential as the reference. 
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Figure 5.17 Ilrror in transmission functions for asymmetric trapezoidal well potentals 
(dotted curve), compared to those for the corresponding asymmtetric square 
wells on coarser numerical grids (solid curve). The trapezoidal wells have 
no grid points within the well walls for Ax = 0.01, one for Ax = 0.02, three 
for Ax = 0.04, and so on, as enumerated in Figure 5.4. The M0ller states 
for these channel-packet calculations are obtained in the interaction pic- 
ture. The equivalent curve for trapezoidal wells modeled in the Schrödinger 
picture (dashed line) is included for comparison. Error is computed using 
equation (5.24), with the analytic square-well potential as the reference. 
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Figure 5.18 Convergence in the interaction picture of the transmission function for a 
trapezoidal well of fixed shape as coordinate spacing Ax is varied. The refer- 
ence transmission function uses Ax = 0.0025 atomic units in the Schrödinger 
picture. All calculations use At = 1.0 • 10~5 atomic units. 
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5.3   Summary 

The Schrödinger-picture split-operator propagator delivers results that improve in 

accuracy consistently with increasing coordinate and time sampling rates. It can be used 

as a basis for comparison for the interaction-picture propagator. The calculation of M0ller 

states in the interaction picture is also a valid technique, but must take into account the 

rapidity of changes in the potential in the choice of time steps in order to achieve accuracy 

similar to that attained by the Schrödinger-picture method. 
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VI.   Application of the Interaction Picture in Reactive Scattering 

This chapter uses M0ller-state and S-matrix calculations on various one-dimensional poten- 

tials to demonstrate the utility of the interaction picture in reactive scattering calculations. 

Various potentials of the general form (Figure 6.1), 

V (x) = Ae-a{x-a)2 - Be-ß{x-b)2 + Ce^*-^ + DO (x - a) 0 (c - x) x + V0O {x - a), 

(6-1) 

where 6 (x) represents a Heaviside step function, are chosen to schematically represent 

the reaction path of a reactive molecular collision that may have two different asymptotic 

Hamiltonians. A potential barrier of the form 

V(x) = Asech{Bx) (6.2) 

is used to demonstrate a type of case where the interaction picture is advantageous relative 

to the Schrödinger picture for the channel-packet technique. 

6.1    Application to a Reactive Potential 

The channel-packet method's applicability to potentials with multiple asymptotic 

potential energies was demonstrated in both the interaction and Schrödinger pictures in 

Chapter V. For this potential, as x —> — oo, the asymptotic Hamiltonian is 

H^ = p2/2^, (6-3) 

and asx-> —oo, the asymptotic Hamiltonian is 

H£ = P
2
/2M + V0. (6.4) 

An example using the values for the parameters in equation (6.1) given in Table 6.1 appears 

as the dotted curve in Figure 6.2. 
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Figure 6.1     An asymmetric triple Gaussian potential. 
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Parameter Value 
A 0.03 
B 0.09 
C 0.02 
D 0.00125 
a -4.0 
b 0.0 
c 4.0 
a 1.0 

ß 1.0 

7 1.0 

Table 6.1     The coefficients used in Equation 6.1 to create the potential function that 
appears in Figures 6.2 et. seq. All quantities use atomic units. 

Parameter Value 
Xo 

fco 
a 

0.0 
8.5 
0.55 
1224 

Table 6.2     The coefficients used in Equation 5.3 to create the asymptotic wavepackets 
shown in Figure 6.2. All quantities use atomic units. 

The transmission function of this potential can be computed by the channel-packet 

method using the interaction picture, beginning with the product and reactant wavepack- 

ets shown in Figure 6.2. The choice of +k0 in equation (5.3) will yield the probability, as 

a function of kinetic energy, that reactants approaching from the left will form products 

exiting to the right. The values of the coefficients used in equation (5.3) used to generate 

the reactant and product states are given in Table 6.2. In the Schrödinger picture, the first 

propagation in equation (2.18) is performed analytically(27), using the initial wavepack- 

ets together with H£ and H^ to obtain intermediate reactant and product wavepackets 

respectively. As shown in Figure 6.3, these wavepackets undergo both translation and 

spreading relative to the initial wavepackets. 

Typically, this wavepacket translation and spreading in the Schrödinger picture gen- 

erates a requirement for large grids. However, in the interaction picture, the intermediate 

wavepackets do not translate or spread, and remain identical to the initial wavepackets. 

Figure 6.3 also illustrates the intermediate interaction-picture channel packets, and demon- 
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Figure 6.2 The initial channel packets tpin (x) and Vw (x) (solid line)' are the same in 

the interaction and Schrödinger pictures, since they are evaluated at t — 0. 
The potential (dotted line) is the sum of two Gaussian barriers, a Gaussian 
well, and a ramp function which is zero for x < -4, 0.01 forz > 4, and rises 
linearly in between. 
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Figure 6.3 The reactant channel packet propagated backward in time to t = -2000 
atomic units, and the product channel packet propagated forward in time to 
t = 2000 atomic units. Since the propagation occurs under a free-particle 
Hamiltonian, the wavepackets are unaffected in the interaction picture (solid 
line). The Schrödinger-picture packet (dashed lines) translates to the left (re- 
actant, long dashes) or right (product, short dashes), and spreads, requiring 
a larger grid. 
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Parameter Value 
r 
*o 

Ati 
Ats 

±2000 
8.5 
0.5 
1.0 

Table 6.3 The quantities associated with the generation of the intermediate states in 
Figure 6.3 and the Möller states in Figure 6.4. Intermediate states (Figure 
6.3) are calculated analytically for the Gaussian asymptotic states at time 
r = —2000 atomic units for the reactant state, and r = +2000 atomic units 
for the reactant state. M0ller states (Figure 6.4) are generated by propagating 
the intermediate states to the time to = 0, using the computational time step 
Ati = 0.5 atomic units in the interaction picture, and Ats = 1.0 atomic units 
in the Schrödinger picture. 

strates that they require a smaller grid when compared with the intermediate Schrödinger- 

picture wavepackets. In the interaction picture, the intermediate wavepackets are used 

in equation (3.36) together with the appropriate asymptotic Hamiltonian to compute the 

reactant and product Möller states. The Möller states shown in Figure 6.4 were computed 

on a grid of 256 points using the nested interaction picture with a four-dimensional Krylov 

subspace. Constants used for the propagation are listed in Table 6.3. For comparison, the 

same Möller states are computed in the Schrödinger picture, requiring a grid of 512 points. 

To complete the calculation, the M0ller states were propagated in the Schrödinger 

picture using a split-operator propagator together with absorbing boundary conditions 

to compute the correlation function in equation (2.26), represented in Figure 6.5(23,80). 

S-matrix elements are then computed using equation (2.28), resulting in the probability 

for reaction shown in Figure 6.6. For comparison, the probability of reaction computed 

entirely within the Schrödinger picture is also shown in Figure 6.6. It is important to 

note that since short iterative Lanczos propagation is employed when using the nested 

interaction picture, a greater number of FFTs is required per time step when compared 

to the split-operator approach commonly used for time-independent Hamiltonians in the 

Schrödinger picture. 
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Figure 6.4 The reactant M0ller state, iß+(x) (solid line), is the result of propagating the 
intermediate reactant state forward in time to t = 0, where the interaction 
and Schrödinger pictures are again identical. The dashed line is the product 
Moller state, i/)_(x), the result of propagating the intermediate product state 
backward in time to t = 0. 
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Figure 6.5     The absolute value squared of the correlation function, computed using equa- 
tion (2.26). 
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Figure 6.6 The transmission coefficient, computed from M0ller states generated using 
the interaction picture (dotted line) and the Schrödinger picture (solid line). 
The interaction-picture S-matrix elements were computed on a grid half the 
size required for the Schrödinger-picture matrix elements. 
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Parameter Potential 1 Potential 2 Potential 3 Potential 4 
A 0.03 0.03 0.03 0.03 
B 0.09 0.09 0.09 0.09 
C 0.03 0.03 0.03 0.03 
D 0.0 0.0 0.0 0.0 
a -4.0 -4.0 -4.0 -21.0 
b 0.0 0.0 0.0 0.0 
c 4.0 4.0 4.0 21.0 
a 1.0 0.5 0.25 0.015625 

ß 1.0 0.5 0.25 0.015625 

7 1.0 0.5 0.25 0.015625 

Table 6.4 The coefficients used in Equation 6.1 to create four potential functions with 
similar energy characteristics but differing slopes. All quantities use atomic 
units. 

6.2   Effect of Potential Slope   ■;- 

The interaction picture is at a performance disadvantage relative to the Schrödinger 

picture regarding time-independent potentials. Since all spatially non-constant potentials 

yield time-dependent Hamiltonians in the interaction picture, the length of the calcula- 

tion time step At is more constrained than it is for the corresponding time-independent 

Hamiltonian in the Schrödinger picture. In this section, the effect of varying the rapidity 

of change of the potential with the spatial coordinate is examined, using several symmetric 

potentials (Figure 6.7) fomulated according to equation (6.1), with the parameters given in 

Table 6.4. The measure of error chosen is the amplitude error of the wave function, given 

by equation 4.2. For a fixed time step, chosen to be At = 1.0 atomic units, three reactant 

M0ller state calculations are performed on identical coordinate grids. The propagation 

techniques examined are a Lanczos method in the interaction picture using a first-order 

approximation of the Hamiltonian, a second-order Lanczos method in the interaction pic- 

ture, and a split-operator method in the Schrödinger picture. The amplitude error of each 

is measured periodically relative to a Schrödinger-picture split-operator propagation using 

a time step At' = 0.1. Before comparison to the reference wavepacket, the interaction- 

picture wavepackets of course must be converted to the Schrödinger picture. 

The calculation on the steepest potential (Potential 1) shows that for this poten- 

tial, the chosen time step produces accurate M0ller states from both the Schrödinger and 
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Figure 6.7     The four triple Gaussian potentials used to investigate the effect of varying 
potential slope on the accuracy of propagation in the interaction picture. 
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Figure 6.8 The growth in amplitude error (equation (4.2)) during the computation of 
the reactant M0ller state for Potential 1. The solid line corresponds to a 
scond-order nested interaction-picture Lanczos propagator, the alternating 
dots and dashes to a first-order one. The dotted line shows the error in the 
computation of the same M0ller state using a split-operator propagator in 
the Schrödinger picture. All propagations shown used a time step At = 1.0 
atomic unit. The amplitude error for all three propagations is measured 
against a split-operator propagation using At' = 0.1 atomic units. 
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the second-order interaction pictures, as shown in Figure 6.8. The first-order interaction- 

picture propagator diverges rapidly and fails to produce an acceptable M0ller state. The 

second-order interaction-picture propagator diverges as the wavepacket encounters the po- 

tential, but maintains good correspondence to the reference calculation overall. The much 

more gradual divergence of the Schrödinger-picture method begins to accelerate late in the 

calculation, but still results in a M0ller state that is markedly closer to the reference than 

the interaction-picture state is. This is reasonable to expect, since the reference state is 

computed by the identical method, the only difference being the length of the time step. 

The somewhat reduced slope of Potential 2, with its slightly broader features, worked 

to the benefit of all three propagators, though not enough to get an accurate result from 

the first-order interaction-picture propagator. The divergence of both the second-order 

interaction-picture and the Schrödinger-picture propagators is less rapid, and occurs later, 

even though the interaction region of the potential is encountered earlier in the propagation. 

Figure 6.9 depicts the evolution of the M0ller-state error for Potential 2. 

Figure 6.10 shows the error associated with M0ller-state propagation on Potential 3, 

which has still broader and more gradually sloped features than Potentials 1 and 2. The 

marginal improvement in the results from all three propagations seen between Potentials 

1 and 2 is extended with Potential 3. 

Potentials 1 through 3 are all very similar, and demonstrate the expected benefits 

of reduced potential slope to the interaction picture, while showing that the Schrödinger 

picture also enjoys improved accuracy. To achieve yet broader and more gradually sloped 

features with a triple Gaussian potential, while retaining the well and barrier energies, 

requires moving the locations of the outer Gaussians farther away from the central one. 

Potential 4 is the result of such an operation. The error of the M0ller-state calculations 

on this potential, shown in Figure 6.11, is higher than might be expected from the trend 

seen with Potentials 1 through 3; however, the larger extent of this potential necessitated 

four times larger grids in both the interaction and Schrödinger pictures. The problem is 

therefore of somewhat greater computational difficulty. 
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Figure 6.9 The growth in amplitude error (equation (4.2)) during the computation of 
the reactant M0ller state for Potential 2. The solid line corresponds to a 
scond-order nested interaction-picture Lanczos propagator, the alternating 
dots and dashes to a first-order one. The dotted line shows the error in the 
computation of the same M0ller state using a split-operator propagator in 
the Schrödinger picture. All propagations shown used a time step At = 1.0 
atomic unit. The amplitude error for all three propagations is measured 
against a split-operator propagation using At' = 0.1 atomic units. 
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Figure 6.10 The growth in amplitude error (equation (4.2)) during the computation of 
the reactant Möller state for Potential 3. The solid line corresponds to a 
scond-order nested interaction-picture Lanczos propagator, the alternating 
dots and dashes to a first-order one. The dotted line shows the error in the 
computation of the same Möller state using a split-operator propagator in 
the Schrodinger picture. All propagations shown used a time step At = 1.0 
atomic unit. The amplitude error for all three propagations is measured 
against a split-operator propagation using At' = 0.1 atomic units. 
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Figure 6.11 The growth in amplitude error (equation (4.2)) during the computation of 
the reactant M0ller state for Potential 4. The solid line corresponds to a 
scond-order nested interaction-picture Lanczos propagator, the alternating 
dots and dashes to a first-order one. The dotted line shows the error in the 
computation of the same Möller state using a split-operator propagator in 
the Schrödinger picture. All propagations shown used a time step At = 1.0 
atomic unit. The amplitude error for all three propagations is measured 
against a split-operator propagation using At' = 0.1 atomic units. 
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Figure 6.12 places the error trajectories for the second-order interaction-picture prop- 

agator with all four potentials together. The general conclusion to be drawn is that error 

levels, while less for lower-sloped potentials on the same computational grid, are not sig- 

nificantly altered when the barrier and well energies remain the same. 
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Portion of Propagtion Completed 

Figure 6.12 The amplitude error functions for the second-order interaction-picture prop- 
agator on the four symmetric triple Gaussian potentials, displayed together 
for comparison. 

6.3   Effect of Wavepacket Compactness 

Employment of the interaction picture in the calculation of M0ller states can be re- 

lied upon to enable reduction of the computational coordinate grid by a factor of two, 

as demonstrated above. However, a factor of two is not enough to result in a reduction 

in the propagation time relative to the Schrödinger picture. This is because the (usually 
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shorter) time steps in the Lanczos method require at least as many FFTs as there are 

Krylov basis vectors, as compared to two FFTs per time step in the split-operator propa- 

gation scheme, which can be employed with the time-independent Hamiltonians common 

to the Schrödinger picture. The nested interaction picture requires an additional pair of 

FFTs per time step to compute the expectation values (x) and (p); and the second-order 

Lanczos algorithm adds an expensive matrix diagonalization as well in order to lengthen 

the allowable time step. This is a worthwhile investment, as shown in Section 6.2 where 

results of a first-order and a second-order propagator are compared. 

The Schrödinger picture can require much larger grids than the interaction picture 

when the wavepackets remain compact throughout the propagation. A wavepacket whose 

momentum has a large absolute value requires a large value of fcmax, with a concomitant 

small coordinate spacing Ax. This in turn necessitates a large number N of grid points 

to contain the trajectory of the coordinate representation, even though the wavepackets 

in both representations may be relatively compact. However, compact wavepackets my be 

propagated in the nested interaction picture using grids barely large enough to contain the 

wavepackets alone; the grids are adjusted continuously to follow their trajectories in both 

representations. This situation is illustrated with the barrier potential shown in Figure 

6.13. Two collision scenarios are examined with this potential, both at a kinetic energy 

of 3.0 atomic units. One scenario involves a reactant state with low reduced mass and 

correspondingly low momentum; the other a reactant state with higher reduced mass and 

momentum. 

6.3.1 Low-Momentum Collision. For this example, a reactant state with reduced 

mass fx = 18.36 atomic units is chosen, with momentum atomic units and Gaussian width 

parameter a = 0.05. The propagation begins in the asymptotic region at time —r = 

—20 atomic units, and proceeds in time steps At = 0.01 atomic units. M0ller states are 

derived in both the interaction and Schrödinger pictures. The results of this scenario 

are summarized in Table 6.5. An eightfold reduction in the grid size required for the 

calculation was realized in the interaction picture as compared to the Schrödinger picture. 

This is sufficient for the interaction picture to be the faster of the two computational 
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Figure 6.13     The barrier potential V (x) = 3.0 sech (x). 
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Propagation 
Method 

Grid 
Size (N) 

Grid 
Spacing (Ax) 

CPU 
Time (sec) 

SP/SPO 
SP/SPO 
IP/2SIL 

512 
256 
32 

0.1 
0.1 
0.2 

6.8 
3.2 
2.9 

Table 6.5 Moller-state propagations with a low-momentum reactant state on the bar- 
rier potential of Figure 6.13, using the split-operator (SPO) method in the 
Schrödinger picture (SP) and a second-order short iterative Lanczos (2SIL) 
method in the interaction picture (IP) . 

Propagation 
Method 

Grid 
Size (JV) 

Grid 
Spacing (Ax) 

CPU 
Time (sec) 

SP/SPO 
SP/SPO 
IP/2SIL 

1024 
512 
32 

0.1 
0.1 
0.2 

14.8 
6.8 
2.9 

Table 6.6 Moller-state propagations with a low-momentum reactant state on the bar- 
rier potential of Figure 6.13, using the split-operator (SPO) method in the 
Schrödinger picture (SP) and a second-order short iterative Lanczos (2SIL) 
method in the interaction picture (IP) . 

techniques in this scenario.   The CPU times reported in the table are from the Silicon 

Graphics IRIX "time" utility on MIPS 10000 processors. 

6.3.2 High-Momentum Collision. A higher-momentum wavepacket makes more 

clear a weakness of the Schrödinger picture when compared to the interaction picture. At 

the same kinetic energy as the previous case, if the reactant state has mass /x = 1836 

atomic units and momentum ko = 104.2, a starting time —r = —100 is required for 

the intermediate wavepacket to be clear of the interaction region at the beginning of the 

forward propagation. The greater time than the low-momentum case results from more 

rapid spreading of the wavepacket during its analytic propagation backward in time to 

create the intermediate state at t = —r. The end result is a need for more room in the 

coordinate representation to contain the extra spreading and translation of the wavepacket. 

In contrast, the interaction-picture propagation can be done on the same grid as the 

previous calculation. Table 6.6 summarizes the results of this group of propagations, which 

use a time step At = 0.05 atomic units on MIPS 10000 processors. 
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6.4    Summary 

Propagation in the interaction picture is a reliable, accurate option for computing the 

M0ller states needed for the channel-packet method of deriving selected S-matrix elements. 

The interaction picture can usually accomplish the calculation on a grid that is, at most, 

half the minimum size possible when propagating in the Schrödinger picture. However, 

because of the larger number of FFTs and matrix diagonalizations per time step, as well 

as the time dependence of its Hamiltonians, propagation in the interaction picture tends 

to require more time to reach an accurate evaluation of a M0ller state than propagation 

in the Schrödinger picture. The interaction picture becomes most advantageous in grid 

savings and comparative computational time in high-momentum collisions. 
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VII.   Conclusion 

Through the use of the channel-packet method, the interaction picture can be used to 

compute reactive scattering matrix elements on reduced computational grids. Previous 

use of the interaction picture has been restricted to single scattering channels, limiting 

its application to non-reactive scattering problems. The channel-packet method opens 

the possibility of extending the efficacy of the interaction picture by allowing each M0ller 

state to be computed in an interaction picture derived from its asymptotic Hamiltonian. A 

twofold reduction in required grid size is generally possible, and under the right conditions, 

larger grid reductions can be achieved. 

7.1    Efficacy of the Interaction Picture in One Dimension 

Three primary achievements have been demonstrated during this research project. 

First, a method has been found to apply the interaction picture to multichannel reactive 

scattering, retiring the commonplace that "there is no convenient generalization of the 

interaction picture" to such scenarios (1). Second, the nested interaction picture has 

been shown reliably to allow computation of Möller states on grids at least a factor of two 

smaller than the smallest possible grid required to derive the same states in the Schrödinger 

picture. Third, while accurate Möller states for most one-dimensional potentials can be 

computed more quickly in the Schrödinger picture, under conditions where a Möller state 

that remains compact in both its coordinate and its momentum representation allows much 

larger grid size reductions, the nested interaction picture has been shown to be the faster 

choice in one dimension. What happens to this situation in higher-order systems remains 

to be shown, but as suggested in Section 7.2, the advantages of the Schrödinger picture 

may erode as more degrees of freedom are added. 

The interaction picture is now indisputably applicable to the calculation of reactive S- 

matrix elements, and has been shown to dovetail effectively with the channel-packet method 

and absorbing boundary conditions in reducing the memory required in the computation 

of Möller states. Because of the time-dependence of the interaction-picture Hamiltonian, 

however, the interaction picture requires shorter time steps in the interaction region of the 
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Method Comment 
Sequential 
Finite Basis 
Sequential Nested 
"Heisenberg" Nested 

Reliable, accurate, slow, no grid reduction 
Unstable, unsuitable for long propagations 
Reliable, accurate, slow, grid reduction at least twofold 
Needs analytic expression for potiential; works only for 

certain potentials 

Table 7.1     Summary of results of investigations of various interaction-picture techniques. 

potential, so in one dimension, reductions in computational time relative to the Schrödinger 

picture are realized only under special circumstances, with the largest reductions in grid 

size. Of the numerous approaches to wavepacket propagation in the interaction picture 

investigated in this project, only the laborious sequential methods were reliably accurate 

when implemented and tested, and only the sequential nested interaction picture was able 

to deliver any reduction in grid size requirements. Table 7.1 summarizes the methods tested 

and the results in each case. All implementations used the iterated Lanczos algorithm to 

represent the time-evolution operator. 

1.2   Extension of the Nested Interaction Picture to More Degrees of Freedom 

If the interaction picture is ever to be useful in genuine molecular scattering calcu- 

lations, it must be applied in three or more dimensions. The interaction picture offers a 

reduction in the memory requirements for such calculations by reducing the grid require- 

ments along the translational coordinates of a multidimensional model. Computational 

time, a more desirable commodity to conserve than simply memory, is not necessarily re- 

duced in one-dimensional calculations using the interaction picture because of the shorter 

time steps necessitated by the interaction picture's time-dependent Hamiltonians. How- 

ever, with added dimensions, the nature of the underlying mathematics suggests that 

reductions in computational time could be realized in multidimensional calculations even 

if the one-dimensional interaction picture process requires more time than the Schrödinger 

picture on a larger grid. Assuming that the FFT dominates the computational effort re- 

quired in the calculation of the M0ller states, effort En scales with number n of degrees of 
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freedom as 

En = (n-l)\Pn\ogPn, (A.7) 

where the argument Pn is the product of the grid sizes for all n degrees of freedom. The 

derivation of equation (A.7) appears in Appendix A. 

Suppose the nested interaction picture in n dimensions allows one dimension's coor- 

dinate grid to be reduced from Nj to Nj/b. If the interaction-picture propagation requires 

a times longer than the Schrödinger picture in one dimension, then using equation (A.7), 

a   = 
rn   \ QN3   1 Ni 

*Wn=l        ^NjlögNj 

ab log Nj 

ab\       logivj' {     } 

for some pair of real constants a and ß, which account for differences in the optimum time 

step and in the number of FFTs needed per time step between the two methods. The ratio 

of propagation times for n > 1 dimensions is 

Tj\      =    a^logif + (/?-a)^log^ 

TS)n aPn\ogPn 

1        logfe        (fl-a)fflogff 

6     61ogPn^      aPn\ogPn      ■ {'} 

As the number of degrees of freedom n increases, the terms with log Pn in the denominator 

vanish, and the computational-effort ratio given by equation (7.2) approaches 

ä(!)„4 P-3> 

Hence, as degrees of freedom are added, the comparative computational effort of the in- 

teraction picture relative to the Schrödinger picture approaches the ratio of the required 

grid sizes in the single dimension that is different. 
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1.3    Topics for Further Study 

The successes obtained within the confines of this investigation point the way to 

many related topics where the use of interaction picture continues to be an attractive po- 

tential tool for scattering calculations. The unsatisfactory performance of the finite-basis 

and "Heisenberg" approaches has not been conclusively explored. Either of these tech- 

niques would be a significant advance over what has thus far been demonstrated should 

the problems be overcome. The finite-basis approach may well be inherently unstable be- 

cause it bases its Krylov vectors on a representation of the Hamiltonian in another Krylov 

subspace, instead of in either the coordinate or momentum representation. However, only 

a highly speculative reason has been put forward as to why the "Heisenberg" nested inter- 

action picture fails for most potentials. Zhang's finite-difference approach is also an inter- 

esting option, requiring fewer FFTs than the Lanczos-based propagation schemes tested 

here(46,82). The question of how beneficially the techniques developed here in one dimen- 

sion scale to the much larger dimensionalities of "real" molecular scattering problems also 

remains to be settled. 

It is important to note that since the short iterative Lanczos propagation scheme is 

employed when using the nested interaction picture, a greater number of FFTs is required 

per time step when compared to the split-operator approach commonly used for time in- 

dependent Hamiltonians in the Schrödinger picture. This results in a trade-off between 

the computational savings afforded by the grid reduction, and the requirement for a larger 

number of FFTs per time step. An alternative to the short iterative Lanczos propaga- 

tor that avoids this trade-off is the second order finite difference propagation technique 

developed by Zhang(46,82). Using this approach, the number of FFTs per time step is 

reduced to the same number required by the split-operator method. This second order fi- 

nite difference technique has been successfully applied to a two-dimensional model of CH3I 

photodissociation(83), and to a three-dimensional model of vibrational predissociation of 

van der Waals molecules (84). 

Related scattering calculations into which further investigations might be made using 

the interaction picture include time-dependent potential-energy surfaces, molecule-surface 

scattering, inclusion of electronic degrees of freedom (dropping the Born-Oppenheimer. ap- 
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proximation), and adapting the models to parallel-architecture computers. Small, stochas- 

tic, time-dependent kicks to the potential may be used to model the behavior of the 

reaction in the presence of a solvent. The interaction picture is especially attractive for 

dealing with explicitly time-dependent Hamiltonians, since the Schrodinger-picture propa- 

gator then faces the same time-step issues that disadvantage the interaction picture when 

the potential is time-independent. The interaction of molecules with surfaces is of great 

interest because of the many practical applications of such reactions. Including electronic 

degrees of freedom would make the model more rigorously correct, at the cost of added 

complexity. However, the Born-Oppenheimer approximation is not valid for all molecu- 

lar interactions(85). If the prediction of equation (7.3) holds—in itself a very important 

question to investigate—the interaction picture might be employed to reduce the added 

computational effort associated with the addition of degrees of freedom associated with 

atomic electrons. Parallelization is a natural improvement to consider because the FFT, 

which consumes much of the time needed by these computations, has been adapted with 

great success to parallel computers. 
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Appendix A.  A General Scaling Rule for Computational Effort of Multidimensional 

FFTs 

For a one-dimensional FFT, the execution time is governed by the total number of multi- 

plications, which scales with the grid size JV as 

£i = iVlog7iV, (A.l) 

where 7 is the order, usually 2, of the FFT's divide-and-conquer scheme(86). Since we are 

only interested in relative scaling using the same FFT base, the value of 7 is unimportant 

and will be dropped from now on. 

Two-dimensional FFTs on JVi x N2 grids are calculated by performing one-dimensional 

FFTs on the JVi rows of length JV2, followed by another iV2 on the columns of length N\. 

Hence, the total effort scales with grid size as 

E2   =   NiN2logN2 + N2Nx\ogNi 

=   N1N2\ogN1N2 

=   P2logP2, (A.2) 

where we define the n-dimensional grid product, 

Pn = f[Ni. (A.3) 

A three-dimensional FFT breaks down into JVi two-dimensional FFTs on N2 x JV3 

grids, plus N2 on JVi x JV3 grids, and N3 on JVi x JV2 grids. The scaling is therefore, 

E3   =   N1{N2N3logN2N3} + N2{N1N3logN1N3} + N3{N1N2\ogN1N2} 

=   P3log(F3)
2 

=   2P3logP3. (A.4) 
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Similarly, in four dimensions there are four sets of three-dimensional FFTs involved, and 

the scaling with grid size is, 

E4   =   Ni {2N2N3NA log N2N3NA} + N2 {2N1N3N4 log N1N3N4} 

+N3 {2N1N2NA log JViN2N4} + NA {2N1N2N3 log JViJV2JV3} (A.5) 

=   2P4log(P4)
3 

=   3!P4logP4. (A-6) 

The general formula for computational effort of an n-dimensional FFT, 

En = (n-l)\Pn\ogPn, (A.7) 

is seen to hold for n between 1 and 4. If n > 4, assuming (A.7) to be true for n - 1, the 

scaling rule is 

En   =   X>-2)!Pnlog 
i=\ 

Pn 
Ni 

n-2)!Pnlogn^ 

n-2)!PnlognLi^ 

n-2)!Pnlog^ 
■» n 

n-2)!P„log^-1 

n-l)!P„logPn. (A.8) 

Equation (A.7) is therefore, by induction, the scaling rule for all natural numbers n 

of grid dimensions. 
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